the advent of information and combinatorial complexity
play

The advent of information and combinatorial complexity: - PowerPoint PPT Presentation

The advent of information and combinatorial complexity: Understanding Darwinian evolution at the molecular level Peter Schuster Institut fr Theoretische Chemie, Universitt Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA


  1. 1. Requirements for information processing 2. The chemistry of Darwinian evolution 3. RNA sequences and structures 4. Consequences of neutrality 5. Evolutionary optimization of RNA structure

  2. RNA folding determination of RNA function molecular recognition catalysis binding to : ground state transition state aptamers ribozymes The paradigm of structural biology

  3. 5' - end N 1 O CH 2 O GCGGAU UUA GCUC AGUUGGGA GAGC CCAGA G CUGAAGA UCUGG AGGUC CUGUG UUCGAUC CACAG A AUUCGC ACCA 5'-end 3’-end N A U G C k = , , , OH O N 2 O P O CH 2 O Na � O O OH N 3 O P O CH 2 O Na � O Definition of RNA structure O OH N 4 O P O CH 2 O Na � O O OH 3' - end O P O Na � O

  4. N = 4 n N S < 3 n Criterion: Minimum free energy (mfe) Rules: _ ( _ ) _ � { AU , CG , GC , GU , UA , UG } A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs

  5. What is neutrality ? Selective neutrality = = several genotypes having the same fitness. Structural neutrality = = several genotypes forming molecules with the same structure.

  6. Reference for postulation and in silico verification of neutral networks

  7. many genotypes � one phenotype

  8. One-error neighborhood GUUAAUCAG GUAAAUCAG GUGAAUCAG GCCAAUCAG GUCUAUCAG GGCAAUCAG GUCGAUCAG GACAAUCAG GUCCAUCAG CUCAAUCAG GUCAUUCAG UUCAAUCAG G A C U G A C U G GUCAAUCAG AUCAAUCAG GUCACUCAG GUCAAUCAC GUCAAACAG GUCAAUCAU G U C A A GUCAAUCAA G C A G GUCAACCAG G U GUCAAUAAG C A G A G U U GUCAAUCUG U C C G A C C U A G A C U A A C The surrounding of U A G U U G A G GUCAAUCAG in sequence space G A G

  9. One error neighborhood – Surrounding of an RNA molecule of chain length n=50 in sequence and shape space

  10. One error neighborhood – Surrounding of an RNA molecule of chain length n=50 in sequence and shape space

  11. One error neighborhood – Surrounding of an RNA molecule of chain length n=50 in sequence and shape space

  12. One error neighborhood – Surrounding of an RNA molecule of chain length n=50 in sequence and shape space

  13. One error neighborhood – Surrounding of an RNA molecule of chain length n=50 in sequence and shape space

  14. One error neighborhood – Surrounding of an RNA molecule of chain length n=50 in sequence and shape space

  15. One error neighborhood – Surrounding of an RNA molecule of chain length n=50 in sequence and shape space

  16. One error neighborhood – Surrounding of an RNA molecule of chain length n=50 in sequence and shape space

  17. One error neighborhood – Surrounding of an RNA molecule of chain length n=50 in sequence and shape space

  18. GGCUAUCGUA U GUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUU A GACG GGCUAUCGUACGUUUAC U CAAAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAUCGUACG C UUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG GGC C AUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAUCGUACGU G UACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUA A CGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCC U GGCAUUGGACG GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCA C UGGACG G G A U GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGG U CCCAGGCAUUGGACG C U GGCUA G CGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG G A GGCUAUCGUACGUUUACCC G AAAGUCUACGUUGGACCCAGGCAUUGGACG C G CC C A GG GGCUAUCGUACGUUUACCCAAAAG C CUACGUUGGACCCAGGCAUUGGACG G C U UGGA A U C UACG U G U C A G U AAG UC U A U C C C AA One error neighborhood – Surrounding of an RNA molecule of chain length n=50 in sequence and shape space

  19. Number Mean Value Variance Std.Dev. Total Hamming Distance: 150000 11.647973 23.140715 4.810480 Nonzero Hamming Distance: 99875 16.949991 30.757651 5.545958 Degree of Neutrality: 50125 0.334167 0.006961 0.083434 Number of Structures: 1000 52.31 85.30 9.24 1 (((((.((((..(((......)))..)))).))).))............. 50125 0.334167 2 ..(((.((((..(((......)))..)))).)))................ 2856 0.019040 3 ((((((((((..(((......)))..)))))))).))............. 2799 0.018660 4 (((((.((((..((((....))))..)))).))).))............. 2417 0.016113 5 (((((.((((.((((......)))).)))).))).))............. 2265 0.015100 6 (((((.(((((.(((......))).))))).))).))............. 2233 0.014887 7 (((((..(((..(((......)))..)))..))).))............. 1442 0.009613 8 (((((.((((..((........))..)))).))).))............. 1081 0.007207 9 ((((..((((..(((......)))..))))..)).))............. 1025 0.006833 10 (((((.((((..(((......)))..)))).))))).............. 1003 0.006687 11 .((((.((((..(((......)))..)))).))))............... 963 0.006420 12 (((((.(((...(((......)))...))).))).))............. 860 0.005733 13 (((((.((((..(((......)))..)))).)).)))............. 800 0.005333 14 (((((.((((...((......))...)))).))).))............. 548 0.003653 15 (((((.((((................)))).))).))............. 362 0.002413 16 ((.((.((((..(((......)))..)))).))..))............. 337 0.002247 G G A U 17 (.(((.((((..(((......)))..)))).))).).............. 241 0.001607 C U 18 (((((.(((((((((......))))))))).))).))............. 231 0.001540 G A 19 ((((..((((..(((......)))..))))...))))............. 225 0.001500 C G CC C A GG 20 ((....((((..(((......)))..)))).....))............. 202 0.001347 G C U UGGA A U C UACG U G U C A G U AAG UC U A U Shadow – Surrounding of an RNA structure in shape space: C AUGC alphabet, chain length n=50 C C AA

  20. 1. Requirements for information processing 2. The chemistry of Darwinian evolution 3. RNA sequences and structures 4. Consequences of neutrality 5. Evolutionary optimization of RNA structure

  21. Charles Darwin. The Origin of Species . Sixth edition. John Murray. London: 1872

  22. Motoo Kimuras population genetics of neutral evolution. Evolutionary rate at the molecular level. Nature 217 : 624-626, 1955. The Neutral Theory of Molecular Evolution . Cambridge University Press. Cambridge, UK, 1983.

  23. The average time of replacement of a dominant genotype in a population is the reciprocal mutation rate, 1/ � , and therefore independent of population size. Is the Kimura scenario correct for frequent mutations?

  24. d H = 1 = = lim ( ) ( ) 0 . 5 x p x p → 0 1 2 p d H = 2 = lim ( ) x p a → 0 1 p = − lim ( ) 1 x p a → 0 2 p d H ≥ 3 random fixation in the sense of Motoo Kimura Pairs of genotypes in neutral replication networks

  25. for comparison: � = 0, � = 1.1, d = 0 Neutral network: Individual sequences n = 10, � = 1.1, d = 1.0

  26. Consensus sequence of a quasispecies of two strongly coupled sequences of Hamming distance d H (X i, ,X j ) = 1.

  27. Neutral network: Individual sequences n = 10, � = 1.1, d = 1.0

  28. Consensus sequence of a quasispecies of two strongly coupled sequences of Hamming distance d H (X i, ,X j ) = 2.

  29. N = 7 Computation of sequences in the core of a neutral network

  30. N = 7 Neutral networks with increasing � : � = 0.10, s = 229

  31. N = 24 Neutral networks with increasing � : � = 0.15, s = 229

  32. N = 70 Neutral networks with increasing � : � = 0.20, s = 229

  33. Extension of the notion of structure

  34. Extension of the notion of structure

  35. GGCCCCUUUGGGGGCCAGACCCCUAAAGGGGUC ((((((((((((((.....)))))))))))))) -26.30 ((((((....)))))).((((((....)))))) -25.30 .(((((((((((((.....))))))))))))). -24.80 (((((((((((((.......))))))))))))) -24.50 ((((((....)))))).(((((......))))) -23.40 (((((......))))).((((((....)))))) -23.30 ..((((((((((((.....)))))))))))).. -23.10 (((((((((((((......)))).))))))))) -23.00 .((((((((((((.......)))))))))))). -23.00 (((((((.((((((.....)))))).))))))) -22.80 ((((((((.(((((.....))))).)))))))) -22.70 ((((((....))))))..(((((....))))). -22.70 ((((((.(((((((.....))))))).)))))) -22.20 (((((((((.((((.....)))).))))))))) -22.10 mfe-weight: 0.7196 (.((((((((((((.....)))))))))))).) -21.90 .(((((((((((((.....)))))))))))).) -21.90 ((((((....))))))...((((....)))).. -21.60 (((((((..(((((.....)))))..))))))) -21.50 .((((((((((((......)))).)))))))). -21.50 (((((......))))).(((((......))))) -21.40 Suboptimal structures and partition function .((((((.((((((.....)))))).)))))). -21.30 ..(((((((((((.......))))))))))).. -21.30 of a small RNA molecule: n = 33

  36. GGCUAUCGUACGUUUAC C CAAAAGUCUACGUUGGACCCAGGCA U UGGACG (((((.((((..(((......)))..)))).))).))............. -7.30 ..........((((((.((....((((.....))))...))...)))))) -6.70 ..........((((((.((....(((((...)))))...))...)))))) -6.60 ..(((.((((..(((......)))..)))).)))..((((...))))... -6.10 (((((.((((..(((......)))..)))).))).))..(........). -6.00 (((((.((((..((........))..)))).))).))............. -6.00 .(((.((..((((..((......))..))))..))....)))........ -6.00 GGCUAUCGUACGUUUAC A CAAAAGUCUACGUUGGACCCAGGCAUUGGACG (((((.((((..(((......)))..)))).))).))............. -7.30 .(((.((..((((..((......))..))))..))....)))........ -6.50 .(((.....((((..((......))..))))((....)))))........ -6.30 ..(((.((((..(((......)))..)))).)))..((((...))))... -6.10 (((((.((((..(((......)))..)))).))).))..(........). -6.00 (((((.((((..((........))..)))).))).))............. -6.00 .(((...((((((..((......))..))))...))...)))........ -6.00 GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCA A UGGACG (((((.((((..(((......)))..)))).))).))............. -7.30 ..(((.((((..(((......)))..)))).)))..(((.....)))... -7.20 ..........((((((.((....((((.....))))...))...)))))) -6.70 ..........((((((.((....(((((...)))))...))...)))))) -6.60 (((((.((((..(((......)))..)))).))).))((.....)).... -6.50 (.(((.((((..(((......)))..)))).))).)(((.....)))... -6.30 .((((.((((..(((......)))..)))).))).)(((.....)))... -6.30 .....(((.((((..((......))..)))))))..(((.....)))... -6.30 (.(((.((((..(((......)))..)))).)))..(((.....))).). -6.10 .....((..((((..((......))..))))..)).(((.....)))... -6.10 ......(((.((((...((....((((.....))))...)).)))).))) -6.10 (((((.((((..(((......)))..)))).))).))..(........). -6.00 (((((.((((..((........))..)))).))).))............. -6.00 .(((.((..((((..((......))..))))..))....)))........ -6.00 ......(((.((((...((....(((((...)))))...)).)))).))) -6.00

  37. Extension of the notion of structure

  38. Extension of the notion of structure

  39. R 1D 2D GGGUGGAAC CACGAG GUUC CACGAG GAAC CACGAG GUUCCUCCC G 3 13 23 33 44 R 1D 2D 23 13 33 C G C G C G A A A A G/ A A C G C C G G G C G C G C A U A U U A U A A U A U G C G C G C G C G C G C A A U A /G A U G C 13 3 G C G CCC 44 1D 2D C G 33 GG 23 R 5' 3’ A A C G C G -1 -28.6 kcal·mol A U A U -1 -28.2 kcal·mol G C G C U U G C 3 G C An RNA switch G C 44 5' 3’ JN1LH -1 -28.6 kcal·mol J.H.A. Nagel, C. Flamm, I.L. Hofacker, K. Franke, -1 -31.8 kcal·mol M.H. de Smit, P. Schuster, and C.W.A. Pleij. Structural parameters affecting the kinetic competition of RNA hairpin formation. Nucleic Acids Res. 34 :3568-3576 , 2006 .

  40. A ribozyme switch E.A.Schultes, D.B.Bartel, Science 289 (2000), 448-452

  41. Two ribozymes of chain lengths n = 88 nucleotides: An artificial ligase ( A ) and a natural cleavage ribozyme of hepatitis- � -virus ( B )

  42. The sequence at the intersection : An RNA molecules which is 88 nucleotides long and can form both structures

  43. Two neutral walks through sequence space with conservation of structure and catalytic activity

  44. RNA 9 :1456-1463, 2003 Evidence for neutral networks and shape space covering

  45. Evidence for neutral networks and intersection of apatamer functions

  46. Neutrality in molecular structures and its role in evolution : • Neutrality is an essential feature in biopolymer structures at the resolution that is relevant for function. • Neutrality manifests itself in the search for minimum free energy structures. • Diversity in function despite neutrality in structures results from differences in suboptimal conformations and folding kinetics. • Neutrality is indispensible for optimization and adaptation.

  47. 1. Requirements for information processing 2. The chemistry of Darwinian evolution 3. RNA sequences and structures 4. Consequences of neutrality 5. Evolutionary optimization of RNA structure

  48. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

  49. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

  50. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

  51. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

  52. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

  53. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

  54. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

  55. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

  56. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

  57. Evolution of RNA molecules as a Markow process and its analysis by means of the relay series

Recommend


More recommend