the advanced implantation detector array aida
play

The Advanced Implantation Detector Array (AIDA) Robert Page The - PowerPoint PPT Presentation

The Advanced Implantation Detector Array (AIDA) Robert Page The AIDA Project Funded by UK EPSRC/STFC (~2M) Collaboration between University of Liverpool University of Liverpool University of Edinburgh STFC Daresbury Laboratory STFC


  1. The Advanced Implantation Detector Array (AIDA) Robert Page

  2. The AIDA Project Funded by UK EPSRC/STFC (~£2M) Collaboration between University of Liverpool University of Liverpool University of Edinburgh STFC Daresbury Laboratory STFC Rutherford Appleton Laboratory Part of the wider DESPEC collaboration within NUSTAR at GSI/FAIR

  3. FAIR context

  4. Super FRS Advanced Implantation Detector Array (AIDA) DEcay SPECtroscopy (DESPEC)

  5. FRS vs. Super FRS

  6. Predicted Super FRS Yields @ 10 12 /s c number Z → Atomic nu = 3.6 / hour Neutron number N → = 0.6 / week

  7. A & Z separation Isomer γ decays for unique A & Z identification

  8. Experimental concept 3 He proportional counters AIDA ion beam AIDA β decay n n 3 He proportional counters Moderator block (polyethylene) Moderator block (polyethylene) Side view Front view Segmented Si detector (DSSD) for ion- β correlations

  9. Predicted Super FRS Yields @ 10 12 /s c number Z → Atomic nu = 3.6 / hour Neutron number N → = 0.6 / week

  10. AIDA design – some criteria 1. Highly segmented for reliable ion- β correlations at high rates 2. Low energy threshold (50 keV) for high β detection efficiency 3. Large energy range to measure ion energies (20 GeV) too!! 4. Many Si planes to stop all ions (~10 mm thickness) 5. Active area to cover (Super) FRS focal plane or single nuclide 6. Compact to fit inside neutron array, RISING Ge array, … 7. Minimum material – n, γ absorption/scattering 8. Good time resolution for n time of flight, … 9. Measure decays within ~ µ s of ion implantation! 10. Spectroscopic performance for decays

  11. AIDA Design “standard” configuration “compact” configuration 24 cm x 8 cm 8 cm x 8 cm Si thickness = 1 mm, strip pitch = 625 µ m, >5000 channels

  12. Compatibility with neutron array BELEN 28 → 44

  13. Compact configuration DSSDs ASICs + FEE cards

  14. Compatibility with RISING

  15. Compatibility with future Ge array

  16. AIDA ASIC Design

  17. AIDA ASIC Design

  18. AIDA ASIC

  19. AIDA ASIC & readout Mezzanine card: FEE card: 4x 16 channel ASICs 4x 16-bit ADC MUX readout (not visible) Cu cover 8x octal 50MSPS 14-bit ADCs EMI/RFI/light screen Xilinx Virtex 5 FPGA cooling PowerPC 40x CPU core – Linux - MIDAS FEE card width: 8cm Gbit ethernet, clock, Prototype – air cooling JTAG ports, power Production – recirculating coolant

  20. Packaged AIDA FEE cards

  21. AIDA clock box Master SYNC to clock box FEE64 (sync master) Clock FEE64 box FEE64 For operating >1 AIDA FEE64 FEE64 Module may be cascaded 200MHz clock and SYNC distribution

  22. Commissioning experiments – β -delayed proton emitters TAMU – MARS – α emitters with N~126 – α emitters with N~126 GSI GSI ( 219-223 U, 218-221 Pa, 216-220 Th) or 109 I & 106 Te – FRS

  23. Status Summary Mechanical assembly of prototype complete Thermal tests of DSSD cooling ongoing Bench tests of ASICs, FEE cards ongoing pulsers → electron sources pulsers → electron sources Commissioning experiments soon (?) First experimental proposals to GSI PAC Further information: http://www.ph.ed.ac.uk/~td/AIDA

  24. Collaborators R.D. Page, T. Grahn, University of S. Rinta-Antila, D.A. Seddon Liverpool T. Davinson, Z.Liu, University of P.J. Woods P.J. Woods Edinburgh Edinburgh P.J. Coleman-Smith, I.H. Lazarus, STFC S.C. Letts, P. Morrall, V.F.E. Pucknell, Daresbury J. Simpson, J. Strachan Laboratory D. Braga, M. Prydderch, S.L. Thomas STFC RAL

Recommend


More recommend