test of the sibyll 2 3 high energy hadronic interaction
play

Test of the SIBYLL 2.3 high-energy hadronic interaction model using - PowerPoint PPT Presentation

Test of the SIBYLL 2.3 high-energy hadronic interaction model using the KASCADE-Grande muon data Juan Carlos Arteaga-Velzquez* , D. Rivera for the KASCADE-Grande Collaboration Instituto de Fsica y Matemticas, Universidad Michoacana, Mxico


  1. Test of the SIBYLL 2.3 high-energy hadronic interaction model using the KASCADE-Grande muon data Juan Carlos Arteaga-Velázquez* , D. Rivera for the KASCADE-Grande Collaboration Instituto de Física y Matemáticas, Universidad Michoacana, México ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 1

  2. Test of the SIBYLL 2.3 high-energy hadronic interaction model using the KASCADE-Grande muon data Juan Carlos Arteaga-Velázquez* , D. Rivera for the KASCADE-Grande Collaboration Instituto de Física y Matemáticas, Universidad Michoacana, México Outline 1. Introduction 2. Motivation 3. The KASCADE-Grande detector 4. Data & Simulations 5. Analysis 6. Results 7. Summary ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 2

  3. Introduction P rimaries with E > 1 PeV are 30 - 20 km detected at Earth through air shower (EAS) observation C osmic rays are produced in HE astrophysical sources ( SNR’s, AGN’s, etc? ). E AS data is interpreted with hadronic models to study energy and composition ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 3

  4. Introduction Soft physics (low Q 2 ) is Hadronic interaction models: relevant for CR interactions 1. Phenomenological models inspired in QCD. 3. Calibrated with accelerator data. 4. Extrapolated to high energies (HE’s) and forward region ( p T ~ 0 ). T. Pierog,EPJ web of conferences 145, 18002 (2017) 0.1 % 0.02 % 99.88 % Model uncertainties produce uncertainties in predictions of EAS parameters ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 4

  5. Introduction Differences in EAS observables due to uncertainties in the models T. Pierog,EPJ web of conferences 145, 18002 (2017) ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 5

  6. Introduction Dependence of relative abundances and spectrum of CR’s with hadronic interaction models: KASCADE Coll., Astrop. Phys. 24 (2005) 1. Mass groups Mass groups KASCADE-Grande experiment M. Bertaina et al., Pos(ICRC2015) 359 Composition and energy scale a r e a f f e c t e d b y m o d e l uncertainties All-particle spectrum Imperative to check validity of hadronic models ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 6

  7. Introduction Employ muons for tests: - Penetrating particles/less atmospheric attenuation. Use CR observatories to constrain/test models: - Keep information from early stage of EAS development. - KASCADE-Grande E CR = 10 15 - 10 18 eV - Sensitive to hadronic processes. E th μ = 230 MeV, 490 MeV, 800 MeV, 2.4 GeV - Used in composition studies. - ICECUBE/ICETOP E CR = 10 15 - 10 17 eV E th μ = 0.2 GeV - EAS-MSU E CR = 10 17 - 10 18 eV E th μ = 10 GeV - Pierre Auger E CR > 10 18 eV E th μ = 1 GeV Proton @ 10 15 eV, Corsika simulation, F. Schmidt & J. Knapp ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 7

  8. Introduction Muon measurements: - Energy spectrum Use CR observatories to - µ - /µ + Charge ratio constrain/test models: - KASCADE-Grande - Multiplicity E CR = 10 15 - 10 18 eV E th μ = 230 MeV, 490 MeV, - Zenith angle dependence 800 MeV, 2.4 GeV - Lateral distributions - ICECUBE/ICETOP E CR = 10 15 - 10 17 eV - Production height E th μ = 0.2 GeV - EAS-MSU - Pseudorapidites E CR = 10 17 - 10 18 eV E th μ = 10 GeV - Pierre Auger E CR > 10 18 eV E th μ = 1 GeV Proton @ 10 15 eV, Corsika simulation, F. Schmidt & J. Knapp ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 8

  9. Motivation KASCADE-Grande EAS muon data Muon attenuation length ( Λ µ ): 1. Parameterizes dependence of number of μ ’s in EAS with the atmospheric depth: N μ = N μo e -(X/Λμ) 2. Correct data for attenuation in the atmosphere. 3. Affected by details of shower production: - π energy spectrum, cross section, p T distribution, - π ± / π 0 ratios, - Baryon/resonance production, - Multiplicity <N> - Inelasticity (y), etc. Muon E th > 230 MeV x Sec θ ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 9

  10. Motivation KASCADE-Grande EAS muon data Muon attenuation length ( Λ µ ): [ ] Total unc. — Stat. unc. ) Measured muon attenuation length (E CR 2 (g/cm KG data ( = 0 - 40 ) 1600 θ ° ° ~ 10 16 - 10 17 eV) is above MC predictions from: 1400 µ Λ Pre-LHC models (~ 2 σ ): 1200 - SIBYLL 2.1 - QGSJET-II-02 1000 800 Post-LHC models (~ 1.34 σ to 1.48 σ ): - EPOS-LHC - QGSJET-II-04 600 400 Better agreement with post-LHC models. 5 5.5 6 6.5 7 QGSJET II-2 QGSJET II-04 SIBYLL 2.1 EPOS LHC J.C. Arteaga et al., Astropar. Phys. 95 (2017) 25 Does SIBYLL 2.3* perform better? *F. Riehn et al., PoS(ICRC2015) 558 Less effective attenuation in exp. data ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 10

  11. The KASCADE-Grande detector J(E) = E - γ Data γ = -2.7 knee γ -3.0 -Spectrum 2 nd knee -Composition -Arrival direction γ ~ -3.3 γ = -2.6 ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 11

  12. The KASCADE-Grande detector 1. What is the origin of J(E) = E - γ the features in the spectrum? 2. Where do they come from? Data γ = -2.7 knee 3. What is their nature? γ -3.0 -Spectrum 2 nd knee -Composition 4. How do they get -Arrival direction γ ~ -3.3 accelerated? 5. Are there nearby sources? γ = -2.6 6. Where is the galactic t o e x t r a g a l a c t i c transition? ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 12

  13. The KASCADE-Grande detector December 2003 - November 2012 1. Location: KIT-Campus North, Karlsruhe, Germany Karlsruhe, Germany 110 m a.s.l., 49 o N, 8 o E ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 13

  14. The KASCADE-Grande detector E= 1 PeV - 10 18 eV KASCADE (200 x 200 m 2 ) + Grande (0.5 km 2 ) Grande array KASCADE array 137 m 252 shielded/ unshielded scintillator detectors, muon tunnel, calorimeter. 37 plastic scintillator detectors W.D. Apel et al., NIMA 620 (2010) 490 ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 14

  15. The KASCADE-Grande detector E= 1 PeV - 10 18 eV KASCADE (200 x 200 m 2 ) + Grande (0.5 km 2 ) Grande array KASCADE array • Ne (> 5 MeV) and e/ γ detector Scintillator detectors Nµ (> 230 MeV) liquid scintillator µ detector Pb/Fe shielding plastic scint. • Charged particles (> 3 MeV) H. Falcke et al., Nature 435 (2005) 313 W.D. Apel et al., NIMA 620 (2010) 490 ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 15

  16. The KASCADE-Grande detector 2. KASCADE provides 1. Grande provides N µ : Number of muons N ch : Number of charged particles Fit to data: ρ ch (r) = N ch ⋅ f chNKG (s, r) Fit to data: ρ µ (r) = N µ ⋅ f µLagutin (r) Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 16

  17. The KASCADE-Grande detector Unfolding methods capable of reconstructing spectra of elemental groups: Exploit N e -N µ correlation Exploit N ch -N µ correlation QGSJET-II-02/Fluka KASCADE Coll., Astropart. Phys. 24 (2005) 1 KASCADE'Grande.Coll.,. Astropart..Phys..47.(2013) - Knee at E~10 15 eV due to a break in the - Iron knee around 80 PeV spectrum of light components Knee positions ∝ Z - Spectral features independent of the hadronic interaction models ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 17

  18. The KASCADE-Grande detector - Knee structure around 80 PeV in the heavy component QGSJET-II-02 2 nd knee Heavy 2 nd knee Light KASCADE Coll., Astrop. Phys. 36 (2012) 183 - Ankle-like feature at 120 PeV in the light component Galactic-extragalactic transition? ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 18

  19. Data & simulations Experimental data 2 744 950 selected events 1. Effective time: 1434 days 2. Área: 8 x 10 4 m 2 3. Exposure: 2.6 x 10 12 m 2 s sr 4. Cuts (reduction of EAS uncertainties): - Central area - θ < 40 o - Instrumental & reconstruction cuts - Optimized for E = [10 16 , 10 17 ] eV Efficiency: log 10 (E/GeV) = 7 ± 0.20 log 10 (N μ ) = 5 ± 0.20 ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 19

  20. Data & simulations MC data (CORSIKA/Fluka) 1. HE hadronic interaction Ν μ data corrected for Model: SIBYLL 2.3 systematic errors ΔΝ μcorrected < 10% 2. Simulation: H, He, C, Si, Fe, mixed; γ = -3, -3.2, -2.8 θ < 42 o E = 10 14 - 3 x 10 18 eV 3. Systematics: - ΔΝ ch < 12% ΔΝ μ < 20% - Δθ < 0.6 o - σ core < 10 m ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 20

  21. Analysis Shower content at same Energy (E) is attenuated with atmospheric depth (X): Large X —> High zenith angles ( θ ) E E X 0 X 0 sec( θ ) θ N μ (0) ) µ MC data (Mixed) 5.45 SIBYLL 2.3 (N N μ ( θ ) 10 5.4 log 5.35 5.3 5.25 5.2 Ε ~10 16 eV 5.15 1 1.05 1.1 1.15 1.2 1.25 1.3 sec( ) θ ISMD 2017, Tlaxcala, Mexico Tests of SIBYLL 2.3 using KG data - J.C. Arteaga 21

Recommend


More recommend