tensor renormalization group approach to scalar field
play

Tensor Renormalization Group Approach to Scalar Field Theories in - PowerPoint PPT Presentation

Tensor Renormalization Group Approach to Scalar Field Theories in Particle Physics CCS, Univ. of Tsukuba Yoshinobu Kuramashi CAQMP 2019@ISSP, Kashiwa Japan, July 22, 2019 1 Plan of Talk Current Status for TRG Studies in Particle Physics


  1. Tensor Renormalization Group Approach to Scalar Field Theories in Particle Physics CCS, Univ. of Tsukuba Yoshinobu Kuramashi CAQMP 2019@ISSP, Kashiwa Japan, July 22, 2019 1

  2. Plan of Talk � Current Status for TRG Studies in Particle Physics � Application to Scalar Field Theory - 2D Real φ 4 Theory ⇒ Spontaneous Symmetry Breaking - 2D Complex φ 4 Theory at Finite Density ⇒ Sign Problem � Summary

  3. Ingredients in Particle Physics • 4D relativisitic quantum field theory in path-integral formalism • Gauge symmetry (U(1), SU(2), SU(3) etc.) • Fermion(quark, lepton), gauge boson(photon, gluon, weak boson), scalar particle(Higgs) • Spontaneous symmetry breaking It is often useful or important to investigate various lower (≤3) dimensional models which contains the above ingredients

  4. TRG for Path-Integral Formalism Advantage • Free from sign problem in Monte Carlo method • Computational cost for L D system size ∝ D � log(L) • Direct treatment of Grassmann numbers • Direct measurement of Z itself Possible applications in particle physics Light quark dynamics in QED/QCD, Finite density QCD, Strong CP problem, Chiral gauge theories, Lattice SUSY etc. Disadvantage Computational cost increases for higher dimensions ⇒ better to start with lower (≤3) dimensional models

  5. Application of TRGs to Particle Physics (1) 2D models Ising model � Levin-Nave, PRL99(2007)120601 X-Y model � Meurice+, PRE89(2014)013308 CP(1)+θ � Kawauchi-Takeda, PRD93(2016)114503 Real φ 4 theory(scalar field) � Shimizu, Mod.Phys.Lett.A27(2012)1250035, Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP1905(2019)184 Complex φ 4 theory at finite density(scalar field) � Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, in preparation QED, QED+θ(fermion+U(1) gauge fields) � Shimizu-YK, PRD90(2014)014508, PRD90(2014)074503, PRD97(2018)034502 Gross-Neveu model at finite density(fermion field) � Takeda-Yoshimura, PTEP2015(2015)043B01 N=1 Wess-Zumino model(fermion+scalar fields) � Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP1803(2018)141 5

  6. Application of TRGs to Particle Physics (2) 3D models Ising � Xie+, PRB86(2012)045139 Potts model � Wan+, CPL31(2014)070503 Free Wilson fermion(fermion field) � Sakai-Takeda-Yoshimura, PTEP2017(2017)063B07, Yoshimura-YK-Nakamura-Takeda-Sakai, PRD97(2018)054511 Z 2 gauge theory at finite temperature(Z 2 gauge field) � YK-Yoshimura, arXiv:1808.08025[hep-lat] 4D models Ising � Akiyama-YK-Yamashita-Yoshimura, arXiv:1906.06060[hep-lat] ⇒ Poster by Akiyama 6

  7. Selected Topics on Scalar Field Theories 1. 2D real φ 4 theory Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, JHEP1905(2019)184 How to treat continuous d. o. f.? Spontaneous breaking of Z 2 symmetry Continuum limit of critical coupling ⇒ comparison w/ MC results 2. 2D complex φ 4 theory at finite density Kadoh-YK-Nakamura-Sakai-Takeda-Yoshimura, in preparation Complex action with finite chemical potential μ Sign problem is really solved?

  8. Collaborators Y. Kuramashi, Y. Yoshimura U. Tsukuba S. Akiyama Y. Nakamura R-CCS S. Takeda, R. Sakai Kanazawa U. D. Kadoh Chulalongkorn U./ Keio U. 8

  9. 2D Real φ 4 Theory Kadoh+, JHEP1905(2019)184 Continuum action of 2D real φ 4 theory 2 ( ∂ ρ φ ( x )) 2 + µ 2 � � 1 � 2 φ ( x ) 2 + λ 4 φ ( x ) 4 d 2 x 0 S cont . = Lattice action ⎧ ⎫ 2 ρ − φ n ) 2 + µ 2 1 n + λ ⎨ ⎬ � � � 2 φ 2 0 4 φ 4 Z = D φ exp( − S ) S = ( φ n +ˆ n 2 ⎩ ⎭ n ∈ Γ L ρ =1 Introduce a constant external field h to investigate spontaneous breaking of Z 2 symmetry � S h = S − h φ n , n ∈ Γ L Boltzmann weight is expressed as 2 e − S h = � � f ( φ n , φ n +ˆ ρ ) n ∈ Γ L ρ =1 2 ( φ 1 − φ 2 ) 2 − µ 2 � − 1 � − λ + h 0 φ 2 1 + φ 2 φ 4 1 + φ 4 � � � � f ( φ 1 , φ 2 ) = exp 4 ( φ 1 + φ 2 ) 2 2 8 16 ⇒ Need to discretize the continuous d. o. f.

  10. Tensor Network Representation Kadoh+, JHEP1905(2019)184 Use of Gauss-Hermite quadrature � ∞ K d ye − y 2 g ( y ) ≈ � w α g ( y α ) −∞ α =1 Discretized version of partition function 2 � � � y 2 � � � � Z ( K ) = w α n exp f y α n , y α n +ˆ α n ρ { α } n ∈ Γ L ρ =1 SVD for f(φ,φ) K U α i σ i V † � f ( y α , y β ) = i β , i =1 Partition function with initial tensor � � Z ( K ) = T ( K ) x n t n x n − ˆ 1 t n − ˆ 2 n ∈ Γ L { x,t } � � � K T ( K ) ijkl = √ σ i σ j σ k σ l w α e y 2 α U α i U α j V † k α V † � l α . α =1

  11. K dependence of <φ> Kadoh+, JHEP1905(2019)184 Expectation value of φ is calculated w/ insertion of an impurity tensor K T ( K ) ijkl = √ σ i σ j σ k σ l y α w α e y 2 α U α i U α j V † k α V † ˜ � l α , α =1 K dependence of <φ> near μ 0,c 2.2e-07 D =32 D =40 2e-07 D =48 1.8e-07 1.6e-07 1.4e-07 < φ > 1.2e-07 1e-07 λ=0.05, h=10 −12 , L=1024 8e-08 Symm. Phase near μ 0,c 6e-08 4e-08 2e-08 10 100 K little K dependence beyond K � 10 11

  12. Determination of Critical Point Kadoh+, JHEP1905(2019)184 Critical point is determined from scaling property of susceptibility ⟨ φ ⟩ h,L − ⟨ φ ⟩ 0 ,L � � µ 2 0 , c − µ 2 � � − γ χ = A χ = lim h → 0 lim , 0 h L →∞ Scaling property of susceptibility h dependence of <φ> h,∞ /h near μ 0,c 1e+10 6e-06 Symm. Phase near μ 0,c 1e+09 5e-06 1e+08 1e+07 4e-06 1e+06 χ -1/1.75 < φ >/h 3e-06 1e+05 1e+04 2e-06 1e+03 λ=0.05, D=32, K=256 1e-06 λ=0.05, D=32, K=256, L≥10 6 1e+02 1e+01 0 1e-12 1e-10 1e-08 1e-06 1e-04 1e-02 -0.1006180 -0.1006176 -0.1006172 -0.1006168 2 h µ 0 Scaling property is well described by 2D Ising universality class (γ=1.75) Consider dimensionless quantity λ/(μ c ) 2 to take the continuum limit 12

  13. Continuum Limit of Critical Coupling Kadoh+, JHEP1905(2019)184 Comparison w/ recent Monte Carlo studies Schaich and Loinaz: cluster (2009) 11.6 Wozar and Wipf: with SLAC derivative (2012) Bosetti et al.: worm (2015) Bronzin et al.: worm with gradient flow (2018) This work 11.4 11.2 2 λ / µ c 11 10.8 10.6 10.4 0 0.02 0.04 0.06 0.08 0.1 λ λ/(μ c ) 2 =10.913(56) in the continuum limit (λ→0) Consistent with recent Monte Carlo results 13

  14. 2D Complex φ 4 Theory at Finite Density Kadoh+, in preparation Continuum action of 2D complex φ 4 theory at finite μ | ∂ ρ φ | 2 + ( m 2 − µ 2 ) | φ | 2 + µ ( φ ∗ ∂ 2 φ − ∂ 2 φ ∗ φ ) + λ | φ | 4 � d 2 x � � S cont = Introduction of finite chemical potential ⇒ complex action Lattice action � Z (original) = D φ 1 D φ 2 exp( − S ) ⎡ ⎤ 2 ⎣ (4 + m 2 ) | φ n | 2 + λ | φ n | 4 − � � e µ δ ρ , 2 φ ∗ ρ + e − µ δ ρ , 2 φ ∗ S = n φ n +ˆ ρ φ n � � ⎢ ⎥ n +ˆ ⎦ n ρ =1 TN representation is constructed in the same way as for the real φ 4 case Bose condensation is expected to occur at sufficiently large μ

  15. Simple(st) Test Bed for Sign Problem Mori-Kashiwa-Onishi, PTEP(2018)023B04 Previous study with path optimization method (Monte Carlo) 1 1 L =4 L =6 Average Phase Factor 0.8 0.8 L =8 Re < e i θ > pq Re < e i θ > pq 0.6 0.6 ⟨ e i θ ⟩ = Z/Z pq 0.4 0.4 � Z pq = D φ 1 D φ 2 exp( − Re( S )) 0.2 0.2 L =4 L =6 0 0 L =8 0 0.5 1 1.5 2 0 0.5 1 1.5 2 µ µ 16 <e iθ > becomes close to 1 L =4 14 L =6 12 Still, it seems difficult to perform L =8 m 2 =1, λ=1 10 Mean Field approx. Re < n > a MC simulation on large L 8 6 4 2 0 -2 0 0.5 1 1.5 2 µ The authors claim ”We show that the average phase factor is significantly enhanced after the optimization and then we can safely perform the hybrid Monte Carlo method.”

  16. Sign-Problem-Free Representation Endres, PoS(LAT2006)133 Mathematical tools Polar coordinate • φ n = ( φ n, 1 , φ n, 2 ) → ( r n cos θ n , r n sin θ n ) Character expansion • ∞ exp( x cos z ) = k = −∞ I k ( x ) exp( ikz ) � x ∈ R, z ∈ C Partition function can be expressed in a sign-problem-free form Z (positive) ⎛ ⎞ 2 � ∞ ∞ �� � � ρ =1 e − 1 ρ ) − λ 4 (4+ m 2 )( r 2 n + r 2 4 ( r 4 n + r 4 ρ ) = d r n n 2 π r n � � � n +ˆ n +ˆ ⎜ ⎟ ⎝ ⎠ 0 n n k n, 1 ,k n, 2 = −∞ ρ ) e k n, ρ µ δ ρ , 2 δ ( k n, 1 + k n, 2 − k n − ˆ · I k n, ρ (2 r n r n +ˆ 1 , 1 − k n − ˆ 2 , 2 ) , 0 TRG should work for Z(positive) Consistency check btw the results for Z(original) and Z(positive)

  17. Results for Z(original) with TRG Kadoh+, in preparation Bose condensation at finite μ Parameters: m 2 =0.01, λ=1, K 2 =4096, D cut =64 3.5 1.1 V=2 2 × 2 2 =4 × 4 V=2 2 × 2 2 =4 × 4 V=2 4 × 2 4 =16 × 16 V=2 4 × 2 4 =16 × 16 1 3 V=2 6 × 2 6 =64 × 64 V=2 6 × 2 6 =64 × 64 0.9 2.5 V=2 8 × 2 8 =256 × 256 V=2 8 × 2 8 =256 × 256 0.8 2 <| φ | 2 > 0.7 1.5 n 0.6 1 0.5 0.5 0.4 0 0.3 -0.5 0.2 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 µ µ Average phase factor � ⟨ e i θ ⟩ = Z/Z pq Z pq = D φ 1 D φ 2 exp( − Re( S )) 1 0.9 0.8 0.7 0.6 Z / Z pq 0.5 0.4 0.3 0.2 0.1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 µ Clear signal even in the <e iθ > � 0 region

Recommend


More recommend