tensor optimized antisymmetrized molecular dynamics toamd
play

Tensor optimized antisymmetrized molecular dynamics (TOAMD) for - PowerPoint PPT Presentation

Tensor optimized antisymmetrized molecular dynamics (TOAMD) for relativistic nuclear matter Hiroshi Toki RCNP/Osaka with Takayuki MyoOsaka IT Kiyomi IkedaRIKEN Hisashi HoriuchiRCNP/Osaka Tadahiro SuharaMatsue TC


  1. Tensor optimized antisymmetrized molecular dynamics (TOAMD) for relativistic nuclear matter Hiroshi Toki (RCNP/Osaka) with Takayuki Myo(Osaka IT) Kiyomi Ikeda(RIKEN) Hisashi Horiuchi(RCNP/Osaka) Tadahiro Suhara(Matsue TC) toki@nakanoshimaosaka 2015.11.19 (17-20)

  2. Tensor Optimized Antisymmetrized Molecular Dynamics (TOAMD) Tensor optimized shell model(TOSM) 1. We include tensor interaction most effectively to shell model 2. Difficult to treat cluster structure + Antisymmetrized molecular dynamics (AMD) 1. Cluster+shell structure is handled on the same footing with effective interaction 2. Difficult to treat bare nucleon-nucleon interaction Study nuclear structure based on nuclear interaction Myo Toki Ikeda Horiuchi Enyo Kimura..

  3. TOAMD wave function (variational wave function) 2. Momentum space Matrix elements Gauss integration(analytical) symmetrization Anti- 3. Anti-symmetrization Tensor correlation Short range correlation 1. Gauss expansion Ψ = (1 + F S )(1 + F D ) Φ ( AMD ) Φ ( AMD ) = A Π i e − ν ( x i − D i ) 2 χ i ( σ ) ξ i ( τ ) D = f D ( r : α )(3 σ 1 ⋅ ˆ r σ 2 ⋅ ˆ r − σ 1 ⋅ σ 2 ) F S = f S ( r : β ) F A ∑ ∑ AMD FVF AMD = g I ( ij ..) F g V g F ( space ) M ( spin ) C ( ij ..) ij .. gauss

  4. TOAMD project 1. T. Myo : S-shell nuclei (demonstrated) Make fundamental programs and establish 
 the TOAMD concept 2. T. Suhara : P-shell nuclei Establish the treatment of shell structure 3. H. Toki, T. Yamada : Nuclear matter Study infinite matter 4. Many collaborations : China, Korea

  5. Nuclear Matter(Relativistic effect) Brockmann Machleidt : PRC42(1990)1965 G Relativistic Brueckner-Hartree-Fock with Bonn-potential V Q ( α ⋅ p + β m + U ) ! ψ = E ! ψ ∑ m ) = m ) kp − pk U k ( ! G ( ! kp p m = m + U S ( ! U = β U S + U V ! m )

  6. Infinite matter(non-relativistic framework: 
 =C.M. boost interaction 3 body attraction(Δ) + 3 body repulsion +Boost corrections) Variational chain summation (VCS) C.M. boost effect =3 body repulsion Effective mass Relativistic effect Akmal Pandhyaripande Ravenhall : PRC58(1998)1804 ( ) ∏ p correlation function Ψ = ij 1 + F Φ F ij ij

  7. Brueckner-Hartree-Fock type equation TOSM for relativistic matter ∑ Ψ = C 0 0 + 2 p 2 h : α C α α

  8. Numerical results of TOSM and comments 5MeV/A short It is difficult to include 3 body interaction in TOSM (low momentum) (high momentum) 3 body interaction (Fujita-Miyazawa delta term) Tensor Short-range C 0 C α

  9. TOAMD vs TOSM Concept is same, but TOAMD is flexible 2 body term 3 body term 4 body term We can include naturally the 3 body interaction ∑ Ψ TOSM = C 0 0 + 2 p 2 h : α C α α Ψ TOAMD = C 0 0 + F D 0 ∑ = C 0 0 + 2 p 2 h : α 2 p 2 h : α F D 0 α C α D = 1 1 ∑ ∑ VF V ij F Dkl 2 2 i ≠ j k ≠ l = 1 + 1 ∑ ∑ ∑ Dij + V ij F V ij F V ij F Djk Dkl 2 4 i ≠ j i ≠ j ≠ k i ≠ j ≠ k ≠ l

  10. TOAMD for nuclear matter (Three body interaction) Ψ = (1 + F S )(1 + F D ) Φ ( RNM ) ∏ A Φ ( RNM ) = ψ p ( r , s ) ξ p ( t ) p ⎛ ⎞ χ p ( s ) E p + ! ⎜ ⎟ m 1 ψ p ( r , s ) = σ ⋅ p e ipr ⎜ ⎟ m χ p ( s ) 2 ! m V ⎜ ⎟ E p + ! ⎝ ⎠ ∑ D = f D ( r ij )(3(2 m ) 2 γ 5 i γ 5 j − k 2 γ 5 i γ i x γ 5 j γ j x ) τ i ⋅ τ j → 3 σ 1 ⋅ k σ 2 ⋅ k − k 2 σ 1 ⋅ σ 2 F x S = f S ( r ij ) γ i 0 γ j → 1 0 F H = T + V Bonn + U Δ

  11. Formulation is simple(2 body+3 body..) MC(Metropolis) method for integration 2 body term S RNM = 1 ∑ ∑ RNM F S VF C ( p 1 p 2 : q 1 q 2 ) C µ 1 C µ 2 C µ 3 2 µ 1 µ 2 µ 3 p 1 p 2 : q 1 q 2 ∑ − k 1 2 / k µ 1 2 − k 2 2 / k µ 2 2 − ( p 1 − q 1 − k 1 − k 2 ) 2 / k µ 3 2 M ( p 1 − k 1 | Γ | p 1 − k 1 − k 2 ) M ( p 2 + k 1 | Γ | p 2 + k 1 + k 2 ) e e e k 1 k 2 ⎛ ⎞ E p + m E q + m p 1 p 2 † 1 − σ ⋅ p σ ⋅ q M ( p |1| q ) = χ p ⎟ χ q ⎜ k 1 E p + m E q + m ⎝ ⎠ 2 E p 2 E q p 2 + k 1 ⎛ ⎞ p 1 − k 1 E p + m E q + m k 2 † − σ ⋅ p E p + m + σ ⋅ q M ( p | γ 5 | q ) = χ p ⎟ χ q ⎜ Γ Γ E q + m ⎝ ⎠ 2 E p 2 E q p 1 − k 1 − k 2 p 2 + k 1 + k 2 k 3 C ( p 1 p 2 : q 1 q 2 ) = δ p 1 q 1 δ p 2 q 2 − δ p 1 q 2 δ p 2 q 1 q 2 q 1 ∫ − k 1 2 / k µ 1 2 e − k 1 2 / k µ 2 2 f = dp 2 dk 1 dk 2 f ( p 1 p 2 k 1 k 2 ) θ ( p 1 − k F ) θ ( p 2 − k F ) e dp 1

  12. 3 body term MC(Metropolis) method for integration ∑ ∑ S RNM = RNM F S VF C ( p 1 p 2 p 3 : q 1 q 2 q 3 ) C µ 1 C µ 2 C µ 3 µ 1 µ 2 µ 3 p 1 p 2 p 3 : q 1 q 2 q 3 ∑ − k 1 2 / k µ 1 2 − ( p 1 − q 1 − k 1 ) 2 / k µ 2 2 − ( p 3 − q 3 ) 2 / k µ 3 2 M ( p 1 − k 1 | Γ | q 1 ) M ( p 2 + k 1 | Γ | p 1 − q 1 − k 1 + p 2 + k 2 ) e e e k 1 p 1 p 2 p 3 δ p 1 q 1 δ p 1 q 2 δ p 1 q 3 k 1 C ( p 1 p 2 p 3 : q 1 q 2 q 3 ) = δ p 2 q 1 δ p 2 q 2 δ p 2 q 3 p 2 + k 1 p 1 − k 1 p 1 − q 1 − k 1 δ p 3 q 1 δ p 3 q 2 δ p 3 q 3 Γ Γ p 3 − q 3 p 1 − q 1 − k 1 + p 2 + k 2 q 1 q 2 q 3 ∫ − k 1 2 / k µ 1 2 f = dp 2 p 3 dk 1 f ( p 1 p 2 p 3 k 1 ) θ ( p 1 − k F ) θ ( p 2 − k F ) θ ( p 3 − k F ) e dp 1

  13. Non-relativistic nuclear matter (1/m expansion) spin-orbit square c.m. correction spin-orbit Analytical gauss integration and differentiation ⎛ ⎞ E p + m E q + m † 1 − σ ⋅ p σ ⋅ q M ( p |1| q ) = χ p ⎟ χ q ⎜ E p + m E q + m ⎝ ⎠ 2 E p 2 E q ( p + q ) 2 M ( p |1| q ) = 1 − 1 1 ∑ − ε xyz i σ x p y q z m 2 (2 m ) 2 8 xyz ( p 1 + q 1 ) 2 + ( p 2 + q ) 2 M ( p 1 |1| q 1 ) M ( p 2 |1| q 2 ) = 1 − 1 1 ∑ − ε xyz i σ 1 x p 1 y q 1 z m 2 (2 m ) 2 8 xyz 1 1 ∑ ∑ ∑ − ε xyz i σ 2 x p 2 y q 2 z + ε xyz i σ 1 x p 1 y q 1 z ε x ' y ' z ' i σ 2 x ' p 2 y ' q 2 z ' (2 m ) 2 (2 m ) 4 xyz xyz x ' y ' z '

  14. +pion with short and tensor correlation -13MeV Hartree-Fock with sigma+omega exchange Numerical results 5 0 E[MeV] -5 -10 -15 -20 0.6 0.8 1 1.2 1.4 1.6 k(F)[1/fm]

  15. Present status (limitation) E(kin)=18MeV+5MeV+10MeV=33MeV Short Fermi Tensor (Bonn potential) One gaussian -> many gaussians Two body term + (many body term) Two -> Three body interaction σ + ω + π + ( ρ + δ + η ) 1 2 Effective Mass ratio 1.5 0.9 1 0.8 0.5 0.7 C 0 0.6 -0.5 0.5 -1 0.4 -1.5 0.6 0.8 1 1.2 1.4 1.6 0.5 1 1.5 2 k(F)[1/fm] r

  16. 1. Reproduce TOSM results by TOAMD 2. Add three body interaction in TOAMD 3. Complete EOS in nuclear matter 4. Hyper-nuclear matter Hu Toki Ogawa TOSM

  17. Conclusion 1. We formulated relativistic nuclear matter using TOAMD 2. We formulated non-relativistic nuclear matter using TOAMD 3. We calculated various terms using Bonn potential 4. We express 3 body term and 3 body interaction 5. We get first (preliminary) results with correlations 6. We shall get relativistic EOS soon using Bonn potential

Recommend


More recommend