technische universit t hamburg harburg
play

Technische Universitt Hamburg-Harburg in cooperation - PowerPoint PPT Presentation

15. Januar 2007 www.ie-leipzig.de Forschung, Institut fr Energetik und Umwelt Entwicklung, Dienstleistung fr - Energie Institute for Energy and Environment - Umwelt Economic Assessment of Geothermal Energy Generation Martin


  1. 15. Januar 2007 www.ie-leipzig.de Forschung, Institut für Energetik und Umwelt Entwicklung, Dienstleistung für - Energie Institute for Energy and Environment - Umwelt Economic Assessment of Geothermal Energy Generation Martin Kaltschmitt, Stephanie Frick Mid-Term Conference, Potsdam, 11 th January 2007 Technische Universität Hamburg-Harburg ��� ��� ��� ��� in cooperation with Institute for Environmental Technology and Energy Economics Institut für Energetik und Umwelt gGmbH, Torgauer Str. 116, D-04347 Leipzig, info@ie-leipzig.de

  2. ��� ��� ��� ��� ��� ��� ��� ��� Agenda � Introduction � Geothermal energy production � Economic analysis (Case Study) • Reservoir • Power plant concept • Investments and operation costs • Power generation costs • Sensitivity analysis � Conclusions

  3. ��� ��� ��� ��� ��� ��� ��� ��� Geothermal Energy � Not only due to climate protection reasons renewable sources of energy gain more and more importance on a world wide scale as well as within Europe. This is also and especially true for the heat and/or electricity provision from geothermal resources due to numerous advantages. � One of the main advantage of a use of geothermal energy is that heat, electricity and even cold can be provided easily with the already available conversion technology. Advantages: Disadvantages: � � No seasonal and daily course of Technology is still very much depen- the energy supply dent from the local circumstances � � Demand-oriented energy Low electrical efficiency due to provision is easily possible thermodynamic restrictions � � Quasi – renewable High investments and substantial risks at the beginning which are hard � Energy provision potential is very to cover by an insurance so far huge � Market penetration in Europe is still � Basically independent from a lacking certain spot

  4. ��� ��� ��� ��� ��� ��� ��� ��� Geothermal Heat Production in Europe Source: http://www.f-e-e.org/upload/DV20050528-Flovenz.htm

  5. ��� ��� ��� ��� ��� ��� ��� ��� Geothermal Power Production in Europe Iceland Germany Italy Austria Russia (Kamtchatka, Kuril Islands) Portugal Turkey (Azores) France (French West Indies) Source: IGG (A. Manzella)

  6. ��� ��� ��� ��� ��� ��� ��� ��� Geothermal Energy Use in Europe � Geothermal heat production is already widely used and can be seen as a competitive energy source for heat supply if the geological conditions are promising. � For power production almost only geothermal high enthalpy fields are exploited so far; but their potential is limited throughout Europe. � Power production from geo- thermal low enthalpy resources is only realized in some pro- jects so far. Beside consider- able technical challenges, predominantly economic barriers (i.e. too high costs compared to competing energy sources) hinder their wider use. Source: GGA Hannover

  7. Power Generation Costs ��� ��� ��� ��� ��� ��� ��� ��� - Reservoir Characteristics - Typical low enthalpy reservoirs (predominantly hot water aquifers) Umea • Area 1: North German Basin Trondheim (characteristic for parts of The Bergen Helsinki Netherlands, Germany, Poland) Petersburg Tallinn Stockholm • Area 2: Upper Rhine Graben Glasgow Goeteborg (characteristic for Riga parts of Germany, France, Kopenhagen Smolensk Vilnius Switzerland) Danzig Minsk Hamburg London Amsterdam • Area 3: Molasse Basin Warschau Berlin Leipzig Brüssel (characteristic for Kiev Paris Frankfurt Prag Luxembourg parts of Germany and Austria) München Bern Wien Odessa Budapest Lyon Mailand Trieste Toulouse Genua Bukarest Marseille 2 Belgrad Heat Flow Values in mW/m mW/m² mW/m² Sarajevo > 150 60 - 80 no data >150 60-80 keine Daten Barcelona Rom Sofia 100 - 150 40 - 60 100-150 40-60 Istanbul 80 - 100 < 40 Neapel Tirana 80-100 <40

  8. Power Generation Costs ��� ��� ��� ��� ��� ��� ��� ��� - Power Plant Concept - Upper North Molasse Rhine German Basin Graben Basin Borehole depth 2,900 m 3,350 m 4,300 m Brine temperature 150 ° C 120 ° C 150 ° C 130 m 3 /h 300 m 3 /h 100 m 3 /h Flow rate Operating water level 400 m 400 m 400 m under top ground surface Power plant ORC ORC ORC technology Cooling medium Water Water Water Power plant capacity 1.4 MW 1.8 MW 1.1 MW Power plant efficiency 11.5 % 10.2 % 11.5 % design point Full load hours 7,500 h/a 7,500 h/a 7,500 h/a Source: GGA Hannover

  9. Power Generation Costs ��� ��� ��� ��� ��� ��� ��� ��� - Investments and Operation Costs - Power plant technology: Brine cycle: 0.1 … 2 Mio. € 0.5 … 8 Mio. € 1,700 … 3,000 €/kW el Production pump: 0.1 … 0.4 Mio. € per well: 2 … > 9 Mio. € depth ca. 2,500 … 5,000 m Stimulation: 0.1 … 0.7 Mio. € Drill site: 0.2 ... 1.2 Mio. € Bore hole measurement: 0.2 … 0.4 Mio. € Production tests: 0.1 … 0.7 Mio. €

  10. Power Generation Costs ��� ��� ��� ��� ��� ��� ��� ��� - Investments and Operation Costs - Norddt. Becken Norddt. Becken risk insurance auxiliary pow er Süddt. Molassebecken Süddt. Molassebecken Oberrheingraben additional charge for Oberrheingraben unforeseen personnel planning pow er plant overhaul, maintenance brine pipeline 0 0,1 0,2 0,3 0,4 0,5 production and injektion Operating Costs in Mio. Euro per year pumps stimulation borehole costs 0 2 4 6 8 10 12 14 16 18 20 Investmentcosts in Mio. Euro

  11. Power Generation Costs ��� ��� ��� ��� ��� ��� ��� ��� - Shares of the Investments - miscellaneous; 3% Total investments: power plant; 15% 15,4 to 28,2 Mio. € brine pipeline; 5% planning; 3% stimulation; 2% production and injection pumps; 2% boreholes; 70%

  12. Power Generation Costs ��� ��� ��� ��� ��� ��� ��� ��� - Frame Conditions - Economic Basis Data Depreciation period 30 a Shareholders‘ equity ratio / interest 30 % / 12 % rate Credit capital ratio / interest rate 70 % / 5 % Electricity purchase price 0.07 €/kWh Heat seeling price * 0.032 €/kWh * District Heat Provision Data Flow / return temperature 75 ° C / 55 ° C (low temperature district heating) Heat capacity Upper Rhine Graben 3.0 MW Molasse Basin 7.0 MW North German Basin 2.3 MW Heat full load hours 3,000 h/a

  13. Power Generation Costs ��� ��� ��� ��� ��� ��� ��� ��� - Generation Costs - ���� ���������������������� ���������������������������������� ���� ���� ���� ���� ���� ���� ���� ���� ������������ �!����� #��������$��� ������� "����� "�����

  14. Power Generation Costs ��� ��� ��� ��� ��� ��� ��� ��� - Generation Costs - ���� ���������������������� ���������������������������������� ���� ���� ���� ���� ���� ���� ���� �������!������ ���� ������������ �!����� #��������$��� ������� "����� "�����

  15. Power Generation Costs ��� ��� ��� ��� ��� ��� ��� ��� - Generation Costs - ���� ���������������������� ���������������������������������� ���� ���� ���� ���� ���� ���� ������%�&'����������(����� ���� �������!������ ���� ������������ �!����� #��������$��� ������� "����� "�����

  16. Power Generation Costs ��� ��� ��� ��� ��� ��� ��� ��� - Generation Costs - ���� ���������������������� ���������������������������������� ���� ���� ���� ���� ���� ���� ������������!�� ������%�&'����������(����� ���� �������!������ ���� ������������ �!����� #��������$��� ������� "����� "�����

Recommend


More recommend