Take a walk on the wild side: the drip-line Forewords Part I. Nuclear forces towards the drip line By courtesy of A. Bonnaccorso Part II. Proton neutron forces in mirror nuclei.
Forewords
Broad resonance Narrow resonance Γ ⋅ t = ! E* E* Width of the resonance proportional to the probability to tunnel through centrifugal barrier B ℓ = ℓ ( ℓ + 1) " 2 Γ ( ℓ , E *, SF ) 2 µ R 2 When the barrier is large or/and E* small ν ν Longer time to tunnel through the barrier -> small Γ -> behave as quasi bound state ℓ Low Large ℓ bound In case of a broad resonance, a large part of the unbound wave function lies in the continuum
Part I: Nuclear forces towards the drip line Broad resonance Narrow resonance B ℓ = ℓ ( ℓ + 1) " 2 Γ ⋅ t = ! 2 µ R 2 Width of the resonance proportional to the probability to tunnel through centrifugal barrier When it takes longer time to tunnel through the barrier -> width is small > quasi bound state ν ν In case of a resonance, part of the wave function lies in the continuum ℓ Low Large ℓ In the case of proton orbits, the Coulomb potential leads to an additional barrier. States may behave as quasi-bound states when much lower than the barriers. π ν
Part I. Nuclear forces towards the drip-line
Nuclear forces towards the drip-line viewed from the study of neutron-rich F isotopes 14 20 16 21 F 22 F 23 F 24 F 27 F 20 F 25 F 26 F 28 F 31 F 29 F 30 F d 5/2 20 O 19 O 21 O 22 O 23 O 24 O 25 O 26 O 27 O 28 O p 1/2 22 N 18 N 19 N 20 N 21 N 23 N 24 N 25 N 26 N 27 N 18 C 17 C 19 C 20 C 21 C 22 C 24 C 23 C s 1/2 d 3/2 d 5/2 Motivation / Scientific context Study of 26,24 F using various experimental techniques at GANIL and GSI Vancouver July 2015
Motivations / Scientific context 14 20 16 Structural change at N=14 14 C 24 F 25 F 23 F 26 F 27 F 30 F 31 F 29 F 28 F 16 O E(2 + ) (MeV) 24 O 5 22 O 22 O 23 O 25 O 24 O 26 O 28 O 27 O 21 N 23 N 22 N 24 N 25 N 26 N 27 N 20 C 0 21 C 22 C 23 C 14 16 20 C 24 C 8 Neutron Number C. R. Hofmann et al. PLB 672 (2009) M. Stanoiu et al. PRC 78 (2008) M. Stanoiu et al. PRC 69 (2004) 22 O and 24 O viewed as magic nuclei (used as cores to model neigbouring nuclei)
Motivations / Scientific context 14 20 16 Structural change at N=14 14 C 24 F 25 F 23 F 26 F 27 F 30 F 31 F 29 F 28 F 16 O E(2 + ) (MeV) 24 O 5 22 O 22 O 23 O 25 O 24 O 26 O 28 O 27 O 21 N 23 N 22 N 24 N 25 N 26 N 27 N 20 C 0 21 C 22 C 23 C 14 16 20 C 24 C 8 Neutron Number 22 O and 24 O viewed as magic nuclei (used as cores to model neigbouring nuclei) Extension of the valley of stability much further in the F than in O isotopic chain (challenging theoretical models in general for drip-line prediction)
Motivations / Scientific context 14 20 16 Ne 24 F 25 F 23 F 26 F 27 F 30 F 31 F 29 F 28 F 22 O 23 O 25 O 24 O 26 O 28 O 27 O O 21 N 23 N 22 N 24 N 25 N 26 N 27 N F 21 C 22 C 23 C 20 C 24 C E. Lunderberg PRL 108 (2012) B. Jurado PLB 649 (2007) 22 O and 24 O viewed as magic nuclei (used as cores to model neigbouring nuclei) Extension of the valley of stability much further in the F than in O isotopic chain Reduction of pairing interaction at the drip-line ? Constraints on models used to describe neutron stars: rotation, cooling … ??
Motivations / Scientific context 26 F 14 20 16 ν π 24 F 25 F 23 F 26 F 27 F 30 F 31 F 29 F 28 F d 3/2 0.77MeV 23 O 25 O 22 O 26 O 28 O 16 24 O 27 O 15MeV d 5/2 14 24 O core 21 N 23 N 22 N 24 N 8 25 N 26 N 27 N 8 21 C 22 C 23 C 20 C 24 C J=1-4 + C. R. Hofmann PRL 100 (2008) 22 O and 24 O viewed as magic nuclei Extension of the valley of stability much further in the F than in O isotopic chain Evolution of pairing interaction at the drip line Constraints on models used to describe neutron stars: rotation, cooling … ?? Evolution of proton neutron forces when reaching the drip-line consequences for r-process nucleosynthesis, shell evolution towards the drip-line
Motivations / Scientific context 26 F 14 20 16 0 Int(J) (MeV) S n 24 F 25 F 23 F 26 F 27 F 30 F 31 F 29 F 28 F -0.5 <Int> -1 <Int> 25 O 23 O 24 O 26 O 28 O 22 O 27 O -1.5 21 N 23 N 22 N 24 N 25 N 26 N 27 N -2 Normal pn Quenched pn 21 C 22 C 23 C 20 C 24 C 1 2 3 4 J 22 O and 24 O viewed as magic nuclei Extension of the valley of stability much further in the F than in O isotopic chain Evolution of pairing interaction at the drip line Constraints on models used to describe neutron stars: rotation, cooling … ?? Evolution of proton neutron forces when reaching the drip-line consequences for r-process nucleosynthesis, shell evolution towards the drip-line 26 F g.s.: J=1 + / J=4 + isomer / J=2 + prompt γ -decay / J=3 + neutron unbound
Discovery ¡of ¡a ¡4 + ¡isomer ¡in ¡ 26 F ¡ <2ms ¡ 10pps ¡ 26 F ¡ 26 F ¡ others ¡ β -‑gated ¡ degrader ¡ Si(Li) ¡ ∆E 1 ¡ ∆E 2 ¡ ∆E 3 ¡ DSSSD ¡ N γ ¡ β - ¡ 2.2(1)ms ¡ 4 + ¡ Energy ¡Loss ¡ 643 ¡keV ¡ ¡ M3 ¡ 2 ¡10 3 ¡ 7.7 ¡(2)ms ¡ β - ¡ 1 + ¡ 26 F ¡ 10 3 ¡ 2 ¡ 4 ¡ 6 ¡ 8 ¡ 10 ¡12 ¡14 ¡16 ¡ Time ¡(ms) ¡ Time ¡of ¡flight ¡
Beta-‑Decay ¡of ¡ 26 F ¡ Unexpected ¡decay ¡curve ¡! ¡ Ge ¡ Different ¡lifeUmes ¡! ¡ 10pps ¡ 26 F ¡ degrader ¡ Si(Li) ¡ ∆E 1 ¡ ∆E 2 ¡ ∆E 3 ¡ DSSSD ¡ β -‑gated ¡
ISOMER ¡ GROUND ¡STATE ¡ Lepailleur ¡et ¡al. ¡Phys. ¡Rev. ¡Le2. ¡110 ¡(2013) ¡
Discovery of a J=2 + excited state in 26 F MCP M. Stanoiu et al. PRC 85 (2012) wedge 36 S 7 5 A . M e V Secondary 3 A e , v / c = beams 0 . 3 4 µ SISSI target 70 BaF 2 N γ 660 (2 + → 1 + ) 26 F 20 Thick Target: Δ E 26 Ne 9+ S n C (112 mg.cm -2 ) 15 + 26 F 800 ‘active’ Plastic 10 24 O 103mg.cm -2 600 22 N 5 400 19 C SPEG 200 0 1000 2000 3000 4000 E(keV) 2.5 2.75 3 A/Q
J=3 + unbound states in 26 F studied at GSI/LAND Proton neutrons 1d 3/2 2s 1/2 1d 5/2 26 F 17 25 F 16 27 Ne 17 26 F-> 25 F+n 20 Counts/200keV J=3 + 15 J=2,3 + 10 5 0 0 1 2 3 4 5 Excellent J=3 + candidate at 260 keV M. Vandebrouck, preliminary Agrees with work of Franck et al. PRC 84 (2011)
Comparision ¡to ¡theory: ¡effect ¡of ¡conUnuum ¡in ¡ 26 F ¡ ¡ ¡ Calcula;ons ¡J. ¡Holt ¡et ¡al. ¡ S.K ¡Bogner ¡et ¡al. ¡113 ¡(2014) ¡ ¡ ¡ 26 F 2,3 + ¡ 0 Int(J) (MeV) S n -0.5 -1 3 + ¡ -1.5 S n ¡ -2 theory ¡ exp 1 2 3 4 J Excellent ¡agreement ¡for ¡the ¡J=2,4 + ¡energies ¡ ¡ Models ¡not ¡able ¡yet ¡to ¡calculate ¡accurate ¡g.s. ¡binding ¡energy ¡ SystemaUc ¡shi` ¡in ¡energy ¡of ¡unbound ¡states ¡-‑> ¡Treatment ¡of ¡the ¡conUnuum ¡is ¡needed ¡
Comparision ¡to ¡theory: ¡ 24 F ¡ ¡ ¡ + (1 + ,2 + ) ¡ 4 + ) 24 F (4 (2 + ,4 + ) ¡ + 3.5 2 + 2 + 1 + ) (3 + 4 3 + 24 F ¡ 3 + ) (3 + ) ¡ (4 + 3 + 0 + 0 2.5 ν π + 4 (4 + ) ¡ Energy (MeV) + 4 d 3/2 ¡ 2 + 1 + s 1/2 ¡ 1 s 1/2 ¡ + + 1 1 d 5/2 ¡ 14 ¡ 1.5 22 O ¡core ¡ ¡ + 0 8 ¡ 8 ¡ 1 + J=2-‑3 + ¡ 2 + + 2 0.5 2 + + 3 2 + + + + 0 1 3 3 3 MBPT Expt. USDb IM-SRG NN+3N-full Very ¡good ¡agreement ¡for ¡all ¡states ¡ L. ¡Caceres, ¡…, ¡J. ¡Holt ¡et ¡al. ¡accepted ¡in ¡PRC ¡ ¡
Conclusions Study of the 26 F states (J=1-4) + using several experimental techniques at GANIL and GSI (isomer and in-beam decay, neutron spectroscopy) Textbook case: parabola Int(J) for odd-odd nucleus on top of magic core 24 O (the further from stability including unbound state) Agreement with theory using realistic interactions for the J=2,4 + Strong shift in energy for the state in the continuum J=3 + Constraint on models aiming at studying pn interactions toward drip-line (shell evolution for r -process nucleosynthesis) Future: Study of the same interaction in 28 F (all unbound states) -> What are the mean and residual pn interactions there ?
Part ¡II: ¡Proton ¡neutron ¡forces ¡in ¡mirror ¡nuclei ¡
Change of pn interaction between mirror nuclei : effect of drip line ? ν π d 5/2 ~1.3MeV s 1/2 ~14MeV 6 397 1 - 2 p 1/2 298 3 - B coul ~4.3MeV 15 F 16 F 120 0 - s 1/2 16 F 2 - 14 O 15 O 16 N 7 9 How does the 16 F 15 N 16 N level scheme looks like ? p 1/2 ν π 14 C 15 C d 5/2 ~11.4MeV π ~2.4MeV s 1/2 p 1/2 8 p 1/2 s 1/2 ν 6 6 2 2 E*( 14 O) = 5.173 MeV , E*( 14 C)= 6.093 MeV The coupling of s 1/2 and p 1/2 nucleons leads to J=0 - , 1 - states 16 N d 5/2 and p 1/2 nucleons leads to J=3 - , 4 - states
Study of unbound states in 16 F using resonant elastic scattering 2 ' 2 d Z Z e • Rutherford elastic scattering : ⎡ ⎤ σ = ⎢ ⎥ 2 p + 15 O → p + 15 O d 4 E sin( / 2 ) Ω θ ⎣ ⎦ • Elastic scattering through a resonant state: p + 15 O → 16 F* → p + 15 O • Use of inverse kinematics since 15 O is radioactive (method -> Gol’dberg 1993) • Thick ‘proton’ target in which the beam is eventually stopped Si detector proton target (CH2) p 3 1 Beam 2 2 1.01 MeV A+1 Y 3 1 A X N +p d σ 1 2 Position ⇒ E x d Ω 3 Width of the peak ⇒ Γ Shape ⇒ J π E p
Recommend
More recommend