1 EL Yield & R E of Xe - M x mixtures for the NEXT TPC Carlos A.O. Henriques 1 , A.F.M. Fernandes, C.D.R. Azevedo, D. Gonzalez-Diaz, C.M.B. Monteiro, L.M.P. Fernandes, N. Lรณpez-March, J.J. Gรณmez-Cadenas, NEXT Collaboration ๐ henriques@gian.fis.uc.pt LIBPhys - Coimbra University of Coimbra, Portugal LIDINE September / 2017
Table of contents 1. Introduction 2. Experimental setup (driftless-GSPC + RGA) 3. EL Yield & R E with Xe-CO2/CH4/CF4 4. The best compromise (spatial vs energy resolutions) 5. Conclusion 2
Introduction Why is so important for NEXT to reduce ๐ โ diffusion on Xe? Transverse resolution: Longitudinal resolution: โช SiPMs pitch + barycenter โช EL gap (5mm) โ 1.5 mm algorithm โ 1 mm โช ๐ฌ ๐ด ๐๐ ~ ๐. ๐ ๐ง๐ง/๐ง โช ๐ฌ ๐ผ ๐๐ ~ ๐๐ ๐ง๐ง/๐ง ๐ โ after 1m drift in Xe background 2mm - still event background โ 10mm โ false ๐ธ๐ธ C.D.R. Azevedo et al., โAn homeopathic cure to pure Xenon large diffusionโ 3
The best molecule and concentration range Xe + molecular It may also degrade: Electron cooling โข S1 and S2 yield โข Energy resolution Reduced ๐ โ diffusion Spatial Energy resolution resolution Finding the additive and concentration which give us the best compromise between spatial and energy resolutions 4
1) Xe โ M x reduces ๐ โ diffusion: ๐ โ cooled by vibrational excitation modes of M x Ref: An homeopathic cure to pure Xenon large diffusion [2] Thermal limit of diffusion at room temperature 2) Xe โ M x degrades S1, S2 and ๐ ๐ : 3) Xe โ M x technical issues: โช stable & compatible (with โช ๐ โ cooling โ lower Y for fixed E (S2) detector and purification system) โช quenching by M x (S1, S2) โช of easy handling and cleaning ๐ ๐ โช attachment/recombination : in drift or EL regions (S2) โช lower transparency to VUV (S1, S2) 5
Experimental setup Xe โ CH 4 Xe โ CO 2 Xe โ CF 4 โข Driftless Gas Scintillation Proportional Counter (GSPC) with ๐ ๐ ๐ก๐๐ช = ๐๐๐ง๐ง โช Eletroluminescence and ๐ ๐น (@ ~ 1.1 bar) Volume 1 and volume 2 used for RGA calibration โข Residual Gas Analyzer (RGA) โช real-time mixture concentration โข Gas purified by SAES hot getters โช Pure Xe at 250 ยฐ C โช Xe โ CH 4 and CF 4 at 120 ยฐ C โช Xe โ CO 2 at 80 ยฐ C 6
7
Energy resolution ( ๐ ๐น = ๐บ๐๐ผ๐ ๐๐๐๐ข๐ ๐๐๐ ) ฮค ๐ ๐ฎ + ๐น ๐ ๐ + ๐ ๐ฏ ๐ ๐ = ๐น เดฅ ๐บ ๐ญ = ๐. ๐๐ + , เดฅ เดฅ ๐ฅ โ เดฅ ๐ถ ๐ โ เดฅ ๐ฏ ๐ ๐ฅ ๐ ๐ถ ๐ ๐ถ ๐ ๐ถ ๐ญ๐ด ฯ in PMT signal ฯ in primary charge k โ light collection efficiency ฯ in EL photon production ๐ ๐ฏ โ fluctuations in PMT gain production ๐ถ ๐ โ primary ๐ โ ๐ถ ๐ญ๐ด โ EL emitted photons EL Yield (Y) & ๐บ ๐ญ in a driftless GSPC (pure Xe) 1) For E/N such as ๐บ, ๐๐๐ โซ ๐ ๐ โ (๐ ๐ ๐ ) โ๐ โ ๐ ๐ 2) Contributions from F and PMT can be determined using data from pure Xe 3) In mixtures, the contribution from Q R E extrapolated at z=0 can be isolated 4) Then, R E in NEXT100 can be estimated 8
Experimental results with a driftless GSPC EL Yield | Energy Resolution | Q (fluctuations in EL production fluctuations) | P sci (Scintillation probability) 9
Results: Yield 1. EL threshold increases (the average energy of electrons is lower โ stronger fields are needed to excite Xe) 2. Y vs E slope decreases, resulting from: โข Mostly quenching in CH4 โข Mostly attachment in CF4 โข Quenching and attachment in CO2 3. Dashed lines: simulation data (still preliminary) 10
Results: R E 1. R E is estimated for zero x-ray penetration using a fitting function, which takes into account the exponential X-rays absorption in Xe gas 2. R E decreases with E: โข Stronger in CH4, since more photons are emitted, fluctuations in PMT are reduced โข Weaker in CF4, since R E degradation is manly due to attachment 11
Results: Q Q (relative fluctuations in the number of produced EL photons ) was estimated: Fano โข CH4 : Q negligible ( โช F) โข CO2 : Q ~ ยฝ Fano (for conc. within ROI) โข CF4 : Q โซ Fano (high attachment) Fano Fano 12
Results: scintillation probability (P sci ) 1) For CH4: โข Assuming no attachment and 100% for pure Xe โข P sci estimated from the ratio between pure Xe and mixtures Y/N vs E/N fitted slopes 2) For CO2: โข Attachment is estimated from Q โข Effect from attachment on Y/N is subtracted โข Then, P sci estimated as in CH4 3) For CF4 โข P sci is assumed to be near 100% as no quenching is expected 13
Comparing additives & the compromise 14
The best molecule and compromise NEXT100 conditions: at 10bar for ๐ ๐๐ E EL = 2.5 KV/cm/bar E drift = 20 V/cm/bar ~ 80% 3 ๐ธ ๐ ร ๐ธ ๐ ร ๐ธ ๐ (๐๐) According to simulated scintillation probabilities (Ref: [7]) + experimental data, S1 may decrease ~๐ 0% CO2, ~๐ 5% CH4 and almost 0% in CF4. 15
Compromise between spatial and energy resolutions at 10bar E EL = 2.5 KV/cm/bar E drift = 20 V/cm/bar 1. Q and เดฅ ๐ ๐ ๐ extrapolated to 10bar: Q 10bar โ 2 ร Q 1bar & เดฅ N EL scaling from simulated scintillation probabilities โ (Ref: [7]) 2. Optimist scenario adopted for CF4 (lower Q, non-scaled เดฅ N EL and maximum concentrations) 3. Transparency after 2 m in CO2 (D. Gonzรกlez-Dรญaz et al) 4. R E extrapolated for NEXT100 : EL gap=6mm, k=0.01, ฮค ๐ ๐ป ๐ป =0.35, E=2.46MeV, F=0.15 3 ๐ธ ๐ ร ๐ธ ๐ ร ๐ธ ๐ (๐๐) 16
Final verdict: Low quenching, high transparency โ S1 (also S2) slightly affected High attachment โ R E extremely degraded (dominated by Q) Stable, but minute concentrations ( ~ 100ppm) are hard to handle CF4 and measure S1 and S2 affected by quenching and transparency (also attachment) Good ๐ ๐ (attachment still low) within concentrations ROI CO2 Very reactive with hot getters, CO production (specific cold getters?) S1 and S2 affected by the high quenching Excellente ๐ ๐ (Q ~0 ), increasing E/N improves significantly ๐ ๐ (reaching almost the same R E as in pure Xe) CH4 Stable & high concentrations ( ~ 4000ppm) are easier to handle and measure CH4 โ best performance and easier to work with 17
Acknowledgments: โข This work is funded by National funds through FCT- Fundaรงรฃo para a Ciรชncia e Tecnologia (Foundation for Science and Technology) in the frame of project reference number "PTDC/FIS-NUC/2525/2014." โข The European Research Council (ERC) under the Advanced Grant 339787-NEXT; โข The Ministerio de Economรญa y Competitividad of Spain under grants FIS2014-53371- C04 and the Severo Ochoa Program SEV-2014-0398; โข The GVA of Spain under grant PROMETEO/2016/120; โข The U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory) and DE-FG02-13ER42020 (Texas A&M); โข The University of Texas at Arlington. โข C.A.O.H., E.D.C.F., C.M.B.M. and C.D.R.A. acknowledge FCT under grants PD/BD/105921/2014, SFRH/BPD/109180/2015, SFRH/BPD/76842/2011 and SFRH/BPD/79163/2011, respectively.
19 Thank you for your time
References Gรณmez Cadenas , J.J. et al. โPresent Status and Future Perspectives of the NEXT Experiment.โ 1. Advances in High Energy Physics 2013 (2014). C.D.R. Azevedo, L.M.P. Fernandes, E.D.C. Freitas et al., โAn homeopathic cure to pure Xenon 2. large diffusion,โ Journal of Instrumentation , vol. 11, C02007 โ C02007, (2016). doi:10.1088/1748- 0221/11/02/C02007. C.A.B. Oliveira, M. Sorel, J. Martin-Albo et al., โEnergy resolution studies for NEXT,โ Journal of 3. Instrumentation , vol. 6, P05007 โ P05007, (2011). doi:10.1088/1748-0221/6/05/P05007. C.M.B. Monteiro, L.M.P. Fernandes, J.A.M. Lopes et al., โSecondary scintillation yield in pure 4. xenon,โ Journal of Instrumentation , vol. 2, P05001 โ P05001, (2007). doi:10.1088/1748- 0221/2/05/P05001. L.M.P. Fernandes, E.D.C. Freitas, M. Ball et al., โPrimary and secondary scintillation 5. measurements in a Xenon Gas Proportional Scintillation Counter,โ Journal of Instrumentation , vol. 5, P09006 โ P09006, (2010). doi:10.1088/1748-0221/5/09/P09006. J. Escada , T.H.V.T. Dias, F.P. Santos et al., โA Monte Carlo study of the fluctuations in Xe 6. electroluminescence yield: pure Xe vs Xe doped with CH4 or CF4 and planar vs cylindrical geometries,โ Journal of Instrumentation , vol. 6, P08006 โ P08006, (2011). doi:10.1088/1748- 0221/6/08/P08006. C.D.R. Azevedo, D. Gonzรกlez- Dรญaz et al., โMicroscopic simulation of xenon -based optical TPCs in 7. the presence of molecular additivesโ accepted on Nuclear Inst. and Methods in Physics Research A (2017) 20
21 Backup
The C F 4 case Huge uncertainty in low R(z=0): 7% RGAโs measurements: Attachment: 35 ๐ โ /cm Y/N 3KV/cm/bar E/N: ~12 Initial/max values from P-V calculation are also shown CF4: 0.002% ! There is not a systematic error โ RGAโs calibration was successfully tested after taking data ! R(z=0): 22% โข EL Y well preserved if Att: 95 ๐ โ /cm compared with ๐ ๐ E/N: ~12 โข Lower ๐ ๐ CF4: 0.023% dependence on E/N ๐ ๐ real With 1 more free fitting parameter (attachment), ๐ ๐ (z=0) extrapolation could be not reliable: R(z=0): 35% Att: 140 ๐ โ /cm โ Here, the real driftless 3KV/cm/bar E/N: ~12 GSPC ๐ ๐ CF4: 0.09% โ Next, previous z=0 extrapolation used but ignoring right-tailed spectrums 22
Recommend
More recommend