table of contents
play

Table of contents 1. Introduction 2. Experimental setup - PowerPoint PPT Presentation

1 EL Yield & R E of Xe - M x mixtures for the NEXT TPC Carlos A.O. Henriques 1 , A.F.M. Fernandes, C.D.R. Azevedo, D. Gonzalez-Diaz, C.M.B. Monteiro, L.M.P. Fernandes, N. Lpez-March, J.J. Gmez-Cadenas, NEXT Collaboration


  1. 1 EL Yield & R E of Xe - M x mixtures for the NEXT TPC Carlos A.O. Henriques 1 , A.F.M. Fernandes, C.D.R. Azevedo, D. Gonzalez-Diaz, C.M.B. Monteiro, L.M.P. Fernandes, N. Lรณpez-March, J.J. Gรณmez-Cadenas, NEXT Collaboration ๐Ÿ henriques@gian.fis.uc.pt LIBPhys - Coimbra University of Coimbra, Portugal LIDINE September / 2017

  2. Table of contents 1. Introduction 2. Experimental setup (driftless-GSPC + RGA) 3. EL Yield & R E with Xe-CO2/CH4/CF4 4. The best compromise (spatial vs energy resolutions) 5. Conclusion 2

  3. Introduction Why is so important for NEXT to reduce ๐Ÿ โˆ’ diffusion on Xe? Transverse resolution: Longitudinal resolution: โ–ช SiPMs pitch + barycenter โ–ช EL gap (5mm) โ†’ 1.5 mm algorithm โ†’ 1 mm โ–ช ๐‘ฌ ๐‘ด ๐’€๐’‡ ~ ๐Ÿ“. ๐Ÿ” ๐ง๐ง/๐ง โ–ช ๐‘ฌ ๐‘ผ ๐’€๐’‡ ~ ๐Ÿ๐Ÿ ๐ง๐ง/๐ง ๐Ÿ โˆ’ after 1m drift in Xe background 2mm - still event background โ€“ 10mm โ†’ false ๐œธ๐œธ C.D.R. Azevedo et al., โ€œAn homeopathic cure to pure Xenon large diffusionโ€ 3

  4. The best molecule and concentration range Xe + molecular It may also degrade: Electron cooling โ€ข S1 and S2 yield โ€ข Energy resolution Reduced ๐’‡ โˆ’ diffusion Spatial Energy resolution resolution Finding the additive and concentration which give us the best compromise between spatial and energy resolutions 4

  5. 1) Xe โ€“ M x reduces ๐’‡ โˆ’ diffusion: ๐‘“ โˆ’ cooled by vibrational excitation modes of M x Ref: An homeopathic cure to pure Xenon large diffusion [2] Thermal limit of diffusion at room temperature 2) Xe โ€“ M x degrades S1, S2 and ๐’ ๐… : 3) Xe โ€“ M x technical issues: โ–ช stable & compatible (with โ–ช ๐’‡ โˆ’ cooling โ†’ lower Y for fixed E (S2) detector and purification system) โ–ช quenching by M x (S1, S2) โ–ช of easy handling and cleaning ๐’ ๐… โ–ช attachment/recombination : in drift or EL regions (S2) โ–ช lower transparency to VUV (S1, S2) 5

  6. Experimental setup Xe โ€“ CH 4 Xe โ€“ CO 2 Xe โ€“ CF 4 โžข Driftless Gas Scintillation Proportional Counter (GSPC) with ๐…๐Œ ๐ก๐›๐ช = ๐Ÿ‘๐Ÿ”๐ง๐ง โ–ช Eletroluminescence and ๐‘† ๐น (@ ~ 1.1 bar) Volume 1 and volume 2 used for RGA calibration โžข Residual Gas Analyzer (RGA) โ–ช real-time mixture concentration โžข Gas purified by SAES hot getters โ–ช Pure Xe at 250 ยฐ C โ–ช Xe โ€“ CH 4 and CF 4 at 120 ยฐ C โ–ช Xe โ€“ CO 2 at 80 ยฐ C 6

  7. 7

  8. Energy resolution ( ๐‘† ๐น = ๐บ๐‘‹๐ผ๐‘ ๐‘‘๐‘“๐‘œ๐‘ข๐‘ ๐‘๐‘—๐‘’ ) ฮค ๐Ÿ‘ ๐‘ฎ + ๐‘น ๐Ÿ ๐Ÿ + ๐‰ ๐‘ฏ ๐‘‚ ๐‘“ = ๐น เดฅ ๐‘บ ๐‘ญ = ๐Ÿ‘. ๐Ÿ’๐Ÿ” + , เดฅ เดฅ ๐ฅ โˆ™ เดฅ ๐‘ถ ๐’‡ โˆ™ เดฅ ๐‘ฏ ๐Ÿ‘ ๐‘ฅ ๐‘— ๐‘ถ ๐’‡ ๐‘ถ ๐’‡ ๐‘ถ ๐‘ญ๐‘ด ฯƒ in PMT signal ฯƒ in primary charge k โ†’ light collection efficiency ฯƒ in EL photon production ๐‰ ๐‘ฏ โ†’ fluctuations in PMT gain production ๐‘ถ ๐’‡ โ†’ primary ๐‘“ โˆ’ ๐‘ถ ๐‘ญ๐‘ด โ†’ EL emitted photons EL Yield (Y) & ๐‘บ ๐‘ญ in a driftless GSPC (pure Xe) 1) For E/N such as ๐บ, ๐‘„๐‘๐‘ˆ โ‰ซ ๐‘… ๐Ÿ‘ โˆ (๐Ž ๐…๐Œ ) โˆ’๐Ÿ โ†’ ๐’ ๐… 2) Contributions from F and PMT can be determined using data from pure Xe 3) In mixtures, the contribution from Q R E extrapolated at z=0 can be isolated 4) Then, R E in NEXT100 can be estimated 8

  9. Experimental results with a driftless GSPC EL Yield | Energy Resolution | Q (fluctuations in EL production fluctuations) | P sci (Scintillation probability) 9

  10. Results: Yield 1. EL threshold increases (the average energy of electrons is lower โ†’ stronger fields are needed to excite Xe) 2. Y vs E slope decreases, resulting from: โ€ข Mostly quenching in CH4 โ€ข Mostly attachment in CF4 โ€ข Quenching and attachment in CO2 3. Dashed lines: simulation data (still preliminary) 10

  11. Results: R E 1. R E is estimated for zero x-ray penetration using a fitting function, which takes into account the exponential X-rays absorption in Xe gas 2. R E decreases with E: โ€ข Stronger in CH4, since more photons are emitted, fluctuations in PMT are reduced โ€ข Weaker in CF4, since R E degradation is manly due to attachment 11

  12. Results: Q Q (relative fluctuations in the number of produced EL photons ) was estimated: Fano โ€ข CH4 : Q negligible ( โ‰ช F) โ€ข CO2 : Q ~ ยฝ Fano (for conc. within ROI) โ€ข CF4 : Q โ‰ซ Fano (high attachment) Fano Fano 12

  13. Results: scintillation probability (P sci ) 1) For CH4: โ€ข Assuming no attachment and 100% for pure Xe โ€ข P sci estimated from the ratio between pure Xe and mixtures Y/N vs E/N fitted slopes 2) For CO2: โ€ข Attachment is estimated from Q โ€ข Effect from attachment on Y/N is subtracted โ€ข Then, P sci estimated as in CH4 3) For CF4 โ€ข P sci is assumed to be near 100% as no quenching is expected 13

  14. Comparing additives & the compromise 14

  15. The best molecule and compromise NEXT100 conditions: at 10bar for ๐‘ ๐›„๐›„ E EL = 2.5 KV/cm/bar E drift = 20 V/cm/bar ~ 80% 3 ๐ธ ๐‘ˆ ร— ๐ธ ๐‘ˆ ร— ๐ธ ๐‘€ (๐‘›๐‘›) According to simulated scintillation probabilities (Ref: [7]) + experimental data, S1 may decrease ~๐Ÿ— 0% CO2, ~๐Ÿ— 5% CH4 and almost 0% in CF4. 15

  16. Compromise between spatial and energy resolutions at 10bar E EL = 2.5 KV/cm/bar E drift = 20 V/cm/bar 1. Q and เดฅ ๐Ž ๐…๐Œ extrapolated to 10bar: Q 10bar โ‰… 2 ร— Q 1bar & เดฅ N EL scaling from simulated scintillation probabilities โ€“ (Ref: [7]) 2. Optimist scenario adopted for CF4 (lower Q, non-scaled เดฅ N EL and maximum concentrations) 3. Transparency after 2 m in CO2 (D. Gonzรกlez-Dรญaz et al) 4. R E extrapolated for NEXT100 : EL gap=6mm, k=0.01, ฮค ๐œ ๐ป ๐ป =0.35, E=2.46MeV, F=0.15 3 ๐ธ ๐‘ˆ ร— ๐ธ ๐‘ˆ ร— ๐ธ ๐‘€ (๐‘›๐‘›) 16

  17. Final verdict: Low quenching, high transparency โ†’ S1 (also S2) slightly affected High attachment โ†’ R E extremely degraded (dominated by Q) Stable, but minute concentrations ( ~ 100ppm) are hard to handle CF4 and measure S1 and S2 affected by quenching and transparency (also attachment) Good ๐’ ๐… (attachment still low) within concentrations ROI CO2 Very reactive with hot getters, CO production (specific cold getters?) S1 and S2 affected by the high quenching Excellente ๐’ ๐… (Q ~0 ), increasing E/N improves significantly ๐’ ๐… (reaching almost the same R E as in pure Xe) CH4 Stable & high concentrations ( ~ 4000ppm) are easier to handle and measure CH4 โ†’ best performance and easier to work with 17

  18. Acknowledgments: โ€ข This work is funded by National funds through FCT- Fundaรงรฃo para a Ciรชncia e Tecnologia (Foundation for Science and Technology) in the frame of project reference number "PTDC/FIS-NUC/2525/2014." โ€ข The European Research Council (ERC) under the Advanced Grant 339787-NEXT; โ€ข The Ministerio de Economรญa y Competitividad of Spain under grants FIS2014-53371- C04 and the Severo Ochoa Program SEV-2014-0398; โ€ข The GVA of Spain under grant PROMETEO/2016/120; โ€ข The U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory) and DE-FG02-13ER42020 (Texas A&M); โ€ข The University of Texas at Arlington. โ€ข C.A.O.H., E.D.C.F., C.M.B.M. and C.D.R.A. acknowledge FCT under grants PD/BD/105921/2014, SFRH/BPD/109180/2015, SFRH/BPD/76842/2011 and SFRH/BPD/79163/2011, respectively.

  19. 19 Thank you for your time

  20. References Gรณmez Cadenas , J.J. et al. โ€œPresent Status and Future Perspectives of the NEXT Experiment.โ€ 1. Advances in High Energy Physics 2013 (2014). C.D.R. Azevedo, L.M.P. Fernandes, E.D.C. Freitas et al., โ€œAn homeopathic cure to pure Xenon 2. large diffusion,โ€ Journal of Instrumentation , vol. 11, C02007 โ€“ C02007, (2016). doi:10.1088/1748- 0221/11/02/C02007. C.A.B. Oliveira, M. Sorel, J. Martin-Albo et al., โ€œEnergy resolution studies for NEXT,โ€ Journal of 3. Instrumentation , vol. 6, P05007 โ€“ P05007, (2011). doi:10.1088/1748-0221/6/05/P05007. C.M.B. Monteiro, L.M.P. Fernandes, J.A.M. Lopes et al., โ€œSecondary scintillation yield in pure 4. xenon,โ€ Journal of Instrumentation , vol. 2, P05001 โ€“ P05001, (2007). doi:10.1088/1748- 0221/2/05/P05001. L.M.P. Fernandes, E.D.C. Freitas, M. Ball et al., โ€œPrimary and secondary scintillation 5. measurements in a Xenon Gas Proportional Scintillation Counter,โ€ Journal of Instrumentation , vol. 5, P09006 โ€“ P09006, (2010). doi:10.1088/1748-0221/5/09/P09006. J. Escada , T.H.V.T. Dias, F.P. Santos et al., โ€œA Monte Carlo study of the fluctuations in Xe 6. electroluminescence yield: pure Xe vs Xe doped with CH4 or CF4 and planar vs cylindrical geometries,โ€ Journal of Instrumentation , vol. 6, P08006 โ€“ P08006, (2011). doi:10.1088/1748- 0221/6/08/P08006. C.D.R. Azevedo, D. Gonzรกlez- Dรญaz et al., โ€œMicroscopic simulation of xenon -based optical TPCs in 7. the presence of molecular additivesโ€ accepted on Nuclear Inst. and Methods in Physics Research A (2017) 20

  21. 21 Backup

  22. The C F 4 case Huge uncertainty in low R(z=0): 7% RGAโ€™s measurements: Attachment: 35 ๐‘“ โˆ’ /cm Y/N 3KV/cm/bar E/N: ~12 Initial/max values from P-V calculation are also shown CF4: 0.002% ! There is not a systematic error โ€“ RGAโ€™s calibration was successfully tested after taking data ! R(z=0): 22% โ€ข EL Y well preserved if Att: 95 ๐‘“ โˆ’ /cm compared with ๐’ ๐… E/N: ~12 โ€ข Lower ๐’ ๐… CF4: 0.023% dependence on E/N ๐’ ๐… real With 1 more free fitting parameter (attachment), ๐’ ๐… (z=0) extrapolation could be not reliable: R(z=0): 35% Att: 140 ๐‘“ โˆ’ /cm โ† Here, the real driftless 3KV/cm/bar E/N: ~12 GSPC ๐’ ๐… CF4: 0.09% โ†“ Next, previous z=0 extrapolation used but ignoring right-tailed spectrums 22

Recommend


More recommend