t s r r t t s st st r rt s
play

t s r rtts stst - PowerPoint PPT Presentation

t s r rtts stst rrts Prr rst s strt t x


  1. ❙t❡♣ ❝♦❝②❝❧❡s ♦✈❡r r♦t❛t✐♦♥s ✿ st♦❝❤❛st✐❝ ♣r♦♣❡rt✐❡s ❏❡❛♥✲P✐❡rr❡ ❈♦♥③❡ ✭❯♥✐✈❡rs✐t② ♦❢ ❘❡♥♥❡s ✶✮ ❆❜str❛❝t ✿ ▲❡t x → x + α ❜❡ ❛ r♦t❛t✐♦♥ ♦♥ t❤❡ ❝✐r❝❧❡ ❛♥❞ ❧❡t ϕ ❜❡ ❛ ❢✉♥❝t✐♦♥ ✇✐t❤ ❜♦✉♥❞❡❞ ✈❛r✐❛t✐♦♥✳ ❉❡♥♦t❡ ❜② ϕ n ( x ) := � n − 1 j =0 ϕ ( x + jα ) t❤❡ ❡r❣♦❞✐❝ s✉♠s✳ ❲❤❡♥ α ❤❛s ❜♦✉♥❞❡❞ ♣❛rt✐❛❧ q✉♦t✐❡♥ts✱ ❛♥ ❛✳s✳ ❛♣♣r♦①✐♠❛t✐♦♥ ❜② ❛ ❇r♦✇♥✐❛♥ ♠♦t✐♦♥ ❤♦❧❞s ❛❧♦♥❣ ❛ s✉❜s❡q✉❡♥❝❡✳ ❲❤❡♥ α ✐s ♦❢ ❜♦✉♥❞❡❞ t②♣❡✱ ❛♥❞ ✉♥❞❡r ❛ ❞✐♦♣❤❛♥t✐♥❡ ❝♦♥❞✐t✐♦♥ ♦♥ t❤❡ ❞✐s❝♦♥t✐♥✉✐t✐❡s✱ ❢♦r ❛ s❡t ♦❢ t✐♠❡s n ♦❢ ❞❡♥s✐t② ✶✱ t❤❡ ❞✐str✐❜✉t✐♦♥ ♦❢ ϕ n ❛❢t❡r ♥♦r♠❛❧✐③❛t✐♦♥ ✐s ❝❧♦s❡ t♦ t❤❡ ●❛✉ss✐❛♥ ❞✐str✐❜✉t✐♦♥✳ ❚❤✐s ❢♦❧❧♦✇s ❢r♦♠ ❞❡❝♦rr❡❧❛t✐♦♥ ✐♥❡q✉❛❧✐t✐❡s ❜❡t✇❡❡♥ t❤❡ ❡r❣♦❞✐❝ s✉♠s ❛t t✐♠❡ q k ✱ ✇❤❡r❡ t❤❡ q k ✬s ❛r❡ t❤❡ ❞❡♥♦♠✐♥❛t♦rs ♦❢ α ✱ ✇❤✐❝❤ ✐s ✈❛❧✐❞ ❢♦r ❛ ❝❧❛ss ♦❢ α ✬s ✐♥❝❧✉❞✐♥❣ ✐rr❛t✐♦♥❛❧s ✇✐t❤ ❜♦✉♥❞❡❞ ♣❛rt✐❛❧ q✉♦t✐❡♥ts✳ ✭❏♦✐♥t ✇♦r❦ ✇✐t❤ ❙té♣❤❛♥❡ ▲❡ ❇♦r❣♥❡✮ ❋♦r ▼❛r✐✉s③ ▲❡♠❛➠❝③②❦ ✻✵t❤ ❜✐rt❤❞❛② ❇❡❞❧❡✇♦ ✶✹ ❏✉♥❡ ✷✵✶✽ ✶

  2. ■♥tr♦❞✉❝t✐♦♥ ▼❛♥② r❡s✉❧ts ❧✐♥❦ t❤❡ st♦❝❤❛st✐❝✐t② ♦❢ ❛ ❞②♥❛♠✐❝❛❧ s②st❡♠ t♦ ❧✐♠✐t t❤❡♦r❡♠s ✐♥ ❞✐str✐❜✉t✐♦♥ ❢♦r t❤❡ ❡r❣♦❞✐❝ s✉♠s ♦❢ ❛♥ ♦❜s❡r✈❛❜❧❡ ϕ ✳ ❚❤❡ s✐♠♣❧❡st ❡①❛♠♣❧❡ ✐s T : x → 2 x mod 1 ♦♥ X = R / Z ❡♥❞♦✇❡❞ ✇✐t❤ t❤❡ ▲❡❜❡s❣✉❡ ♠❡❛s✉r❡ ✿ t❤❡ ♥♦r♠❛❧✐③❡❞ ❡r❣♦❞✐❝ s✉♠s s❛t✐s❢② ❛ ❈❡♥tr❛❧ ▲✐♠✐t ❚❤❡♦r❡♠ ✭❈▲❚✮ ✇❤❡♥ ϕ ✐s ❍ö❧❞❡r ♦r ✇✐t❤ ❜♦✉♥❞❡❞ ✈❛r✐❛t✐♦♥✳ ❲❤❡♥ T ✐s ❛♥ ✐rr❛t✐♦♥❛❧ r♦t❛t✐♦♥ x → x + α mod 1 ♦♥ X ✱ t❤❡ ❜❡✲ ❤❛✈✐♦✉r ✐s q✉✐t❡ ❞✐✛❡r❡♥t✳ ❉❡♣❡♥❞✐♥❣ ♦♥ t❤❡ ❉✐♦♣❤❛♥t✐♥❡ ♣r♦♣❡rt✐❡s ♦❢ α ✱ t♦♦ ♠✉❝❤ r❡❣✉❧❛r✐t② ❢♦r ϕ ❝❛♥ ✐♠♣❧② t❤❛t ϕ ✐s ❛ ❝♦❜♦✉♥❞❛r②✳ ❚❤❡r❡❢♦r❡✱ ✐t ✐s ♥❛t✉r❛❧ t♦ ❝♦♥s✐❞❡r ❧❡ss r❡❣✉❧❛r ❜✉t ❇❱ ✭❜♦✉♥✲ ❞❡❞ ✈❛r✐❛t✐♦♥✮ ❢✉♥❝t✐♦♥s✱ ✐♥ ♣❛rt✐❝✉❧❛r st❡♣ ❢✉♥❝t✐♦♥s✳ ◆❡✈❡rt❤❡✲ ❧❡ss✱ ❜② t❤❡ ❉❡♥❥♦②✲❑♦❦s♠❛ ✐♥❡q✉❛❧✐t②✱ t❤❡ ❡r❣♦❞✐❝ s✉♠s ϕ L ( x ) = � L − 1 ϕ ( x + jα ) ♦❢ ❛ ❇❱ ❢✉♥❝t✐♦♥ ϕ ❛r❡ ✉♥✐❢♦r♠❧② ❜♦✉♥❞❡❞ ❛❧♦♥❣ t❤❡ 0 s❡q✉❡♥❝❡ ( q n ) ♦❢ ❞❡♥♦♠✐♥❛t♦rs ♦❢ α ✳ ❇✉t ♦♥❡ ❝❛♥ ❛s❦ ✐❢ ❛❧♦♥❣ ♦t❤❡r s❡q✉❡♥❝❡s ♦❢ t✐♠❡ ( L n ) t❤❡r❡ ✐s ❛ ❞✐✛✉s✐✈❡ ❜❡❤❛✈✐♦✉r ❛t s♦♠❡ s❝❛❧❡ ❢♦r t❤❡ ❡r❣♦❞✐❝ s✉♠s✳ ✷

  3. ❘❡s✉❧ts ♦♥ t❤❡ ❈▲❚ ✐♥ t❤❡ ❝♦♥t❡①t ♦❢ ❋♦✉r✐❡r s❡r✐❡s✱ ✇❤✐❝❤ ❛r❡ r❡✲ ❧❛t❡❞ t♦ ♦✉r ❢r❛♠❡✇♦r❦✱ tr❛❝❡ ❜❛❝❦ t♦ ❙❛❧❡♠ ❛♥❞ ❩②❣♠✉♥❞ ✭✶✾✹✽✮ ✐♥ t❤❡ ✹✵✬s✳ ▼✳ ❉❡♥❦❡r ❛♥❞ ❘✳ ❇✉rt♦♥ ✐♥ ✶✾✽✼✱ t❤❡♥ ▼✳ ❲❡❜❡r✱ ▼✳ ▲❛❝❡② ❛♥❞ ♦t❤❡r ❛✉t❤♦rs ❣❛✈❡ r❡s✉❧ts ♦♥ ❛ ❈▲❚ ❢♦r ❡r❣♦❞✐❝ s✉♠s ❣❡♥❡r❛t❡❞ ❜② r♦t❛t✐♦♥s✳ ❚❤❡✐r ❣♦❛❧ ✇❛s t❤❡ ❡①✐st❡♥❝❡ ❢✉♥❝✲ t✐♦♥s✱ ♥❡❝❡ss❛r✐❧② ✐rr❡❣✉❧❛r✱ ✇❤♦s❡ ❡r❣♦❞✐❝ s✉♠s s❛t✐s❢② ❛ ❈▲❚ ❛❢t❡r s❡❧❢✲♥♦r♠❛❧✐③❛t✐♦♥✳ ■♥ ✶✾✾✼ ❉✳ ❱♦❧♥ý ❛♥❞ P✳ ▲✐❛r❞❡t s❤♦✇❡❞ t❤❛t ❢♦r ❛♥ ❛♣❡r✐♦❞✐❝ ♠❡❛✲ s✉r❡ ♣r❡s❡r✈✐♥❣ s②st❡♠ ( X, µ, T ) ♦♥ ❛ ❝♦♠♣❛❝t ♠❡tr✐❝ s♣❛❝❡ X ❛♥❞ ❢♦r ❛ G δ s❡t ♦❢ f ✐♥ C 0 ( X ) t❤❡ ❞✐str✐❜✉t✐♦♥s ♦❢ t❤❡ r❛♥❞♦♠ ✈❛r✐❛❜❧❡s � n − 1 c − 1 j =0 f ◦ T j ✱ c n ↑ ∞ ❛♥❞ c n /n → 0 ✱ ❛r❡ ❞❡♥s❡ ✐♥ t❤❡ s❡t ♦❢ ❛❧❧ n ♣r♦❜❛❜✐❧✐t② ♠❡❛s✉r❡s ♦♥ t❤❡ r❡❛❧ ❧✐♥❡✳ ❚❤❡ ❧✐♠✐t t❤❡♦r❡♠s ❛❧♦♥❣ s♦♠❡ s✉❜s❡q✉❡♥❝❡s t❤❛t ✇❡ ❛r❡ ❣♦✐♥❣ t♦ s❤♦✇ ❛r❡ ❢♦r s✐♠♣❧❡ st❡♣s ❢✉♥❝t✐♦♥s✳ ■♥ t❤✐s ❞✐r❡❝t✐♦♥✱ ❢♦r ψ := 1 [0 , 1 2 [ − 1 [ 1 2 , 0[ ✱ ❋✳ ❍✉✈❡♥❡❡rs ✐♥ ✷✵✵✾ ♣r♦✈❡❞ t❤❛t ❢♦r ❡✈❡r② ✐rr❛t✐♦♥❛❧ α t❤❡r❡ ✐s ❛ s❡q✉❡♥❝❡ ( L n ) n ∈ N s✉❝❤ t❤❛t ψ L n / √ n ✐s ❛s②♠♣t♦t✐❝❛❧❧② ♥♦r♠❛❧❧② ❞✐str✐❜✉t❡❞✳ ✸

  4. ❍❡r❡ ✇❡ ❝♦♥s✐❞❡r t❤❡ ❞✐✛✉s✐✈❡ ❜❡❤❛✈✐♦✉r ♦❢ t❤❡ ❡r❣♦❞✐❝ s✉♠s ♦✈❡r ❛ r♦t❛t✐♦♥ ❜② α ♦❢ ❇❱ ❢✉♥❝t✐♦♥s✱ ❧✐❦❡ st❡♣ ❢✉♥❝t✐♦♥s ϕ ✇✐t❤ ❛ ✜♥✐t❡ ♥✉♠❜❡r ♦❢ ❞✐s❝♦♥t✐♥✉✐t✐❡s✳ ❚✇♦ ❞✐✛❡r❡♥t ♠❡t❤♦❞s ❝❛♥ ❜❡ ✉s❡❞ ✿ ✲ ❆ ♠❡t❤♦❞ ❜❛s❡❞ ♦♥ ❛♣♣r♦①✐♠❛t✐♦♥ ❜② ❧❛❝✉♥❛r② s❡r✐❡s ❧❡❛❞✐♥❣ t♦ ❛♥ ❆❙■P ✭❛❧♠♦st s✉r❡ ✐♥✈❛r✐❛♥❝❡ ♣r✐♥❝✐♣❧❡✮ ❢♦r s✉❜s❡q✉❡♥❝❡s ♦❢ ❡r❣♦❞✐❝ s✉♠s ❢♦r ❇❱ ♦❜s❡r✈❛❜❧❡s ✇❤❡♥ α ❤❛s ✉♥❜♦✉♥❞❡❞ ♣❛rt✐❛❧ q✉♦t✐❡♥ts✳ ■t ✐s ❜❛s❡❞ ♦♥ ❛ ❧✐♥❦ ❜❡t✇❡❡♥ r♦t❛t✐♦♥s ❛♥❞ ❡①♣❛♥s✐✈❡ ♠❛♣s ✇❤✐❝❤ ❛❧✲ ❧♦✇s t♦ ✉s❡ t❤❡ st♦❝❤❛st✐❝ ❜❡❤❛✈✐♦✉r ♦❢ s✉♠s ♦❢ t❤❡ ❢♦r♠ � n 1 f j ( k j x ) ✇❤❡r❡ ( k j ) ✐s ❛ ❢❛st ❣r♦✇✐♥❣ s❡q✉❡♥❝❡ ♦❢ ✐♥t❡❣❡rs ❛♥❞ ( f j ) ❛ ❜♦✉♥❞❡❞ s❡q✉❡♥❝❡ ♦❢ ❢✉♥❝t✐♦♥s ✐♥ ❛ ❝❧❛ss ✇❤✐❝❤ ❝♦♥t❛✐♥s t❤❡ ❇❱ ❢✉♥❝t✐♦♥s✳ ■t ✉s❡s ❛ r❡s✉❧t ♦❢ ❇❡r❦❡s ❛♥❞ P❤✐❧✐♣♣ ✭✶✾✼✾✮ ✐♥ ❛ s❧✐❣❤t❧② ❡①t❡♥❞❡❞ ✈❡rs✐♦♥✳ ✭❥♦✐♥t ✇♦r❦ ✇✐t❤ ❙✳ ■s♦❧❛ ❛♥❞ ❙✳ ▲❡ ❇♦r❣♥❡✮✳ ✲ ❆ ♠❡t❤♦❞ ❜❛s❡❞ ♦♥ ❞❡❝♦rr❡❧❛t✐♦♥ ✐♥❡q✉❛❧✐t✐❡s ❛♥❞ ✇❡❧❧ ❛❞❛♣t❡❞ t♦ t❤❡ ❜♦✉♥❞❡❞ t②♣❡ ❝❛s❡✳ ■t r❡❧✐❡s ♦♥ ❛♥ ❛❜str❛❝t ❝❡♥tr❛❧ ❧✐♠✐t t❤❡♦r❡♠ ✈❛❧✐❞ ✉♥❞❡r s♦♠❡ s✉✐t❛❜❧❡ ❞❡❝♦rr❡❧❛t✐♦♥ ❝♦♥❞✐t✐♦♥s✳ ❇❡s✐❞❡ t❤❡ r❡♠❛r❦❛❜❧❡ r❡❝❡♥t ✏t❡♠♣♦r❛❧✑ ❧✐♠✐t t❤❡♦r❡♠s ❢♦r r♦t❛✲ t✐♦♥s ✭❏✳ ❇❡❝❦✱ ▼✳ ❇r♦♠❜❡r❣✱ ❈✳ ❯❧❝✐❣r❛✐✱ ❉✳ ❉♦❧❣♣❛②t✱ ❖✳ ❙❛r✐❣✮✱ t❤❡ s❡❝♦♥❞ ♠❡t❤♦❞ s❤♦✇s t❤❛t ❛ ✏s♣❛t✐❛❧✑ ❛s②♠♣t♦t✐❝ ♥♦r♠❛❧ ❞✐s✲ tr✐❜✉t✐♦♥ ❝❛♥ ❛❧s♦ ❜❡ ♦❜s❡r✈❡❞✱ ❢♦r t✐♠❡s r❡str✐❝t❡❞ t♦ ❛ ❧❛r❣❡ s❡t ♦❢ ✐♥t❡❣❡rs✳ ✹

Recommend


More recommend