t he e denwald n ew t ower
play

T HE E DENWALD N EW T OWER : T HE E DENWALD N EW T OWER B RYAN H ART - PowerPoint PPT Presentation

T HE E DENWALD N EW T OWER : T HE E DENWALD N EW T OWER B RYAN H ART B RYAN H ART STRUCTURAL STRUCTURAL L ATERAL R EDESIGN P RESENTATION L ATERAL R EDESIGN P RESENTATION 13 A PRIL 2008 13 A PRIL 2008 A DVISOR : P ROF . A LI M EMARI A DVISOR : P


  1. T HE E DENWALD N EW T OWER : T HE E DENWALD N EW T OWER B RYAN H ART B RYAN H ART STRUCTURAL STRUCTURAL L ATERAL R EDESIGN P RESENTATION L ATERAL R EDESIGN P RESENTATION 13 A PRIL 2008 13 A PRIL 2008 A DVISOR : P ROF . A LI M EMARI A DVISOR : P ROF . A LI M EMARI

  2. B RYAN H ART B RYAN H ART E DENWALD N EW T OWER E DENWALD N EW T OWER S TRUCTURAL O PTION S TRUCTURAL O PTION B UILDING UILDING S CHEMATIC B UILDING UILDING S TATISTICS CHEMATIC TATISTICS • General Description: General Description: p O VERVIEW O VERVIEW • 12 Story Retirement Community 12 Story Retirement Community Addition Addition • 60 Independent Living Apartments 60 Independent Living Apartments • 32 Assisted Living Apartments 32 Assisted Living Apartments • Amenities Amenities • Size: 253,000 sq. ft. Size: 253,000 sq. ft. • Overall Project Cost: $52 million Overall Project Cost: $52 million

  3. B RYAN H ART B RYAN H ART E DENWALD N EW T OWER E DENWALD N EW T OWER S TRUCTURAL O PTION S TRUCTURAL O PTION B ACKGROUND ACKGROUND R ECENT ECENT H ISTORY OF S EISMIC EISMIC C ODE ISTORY OF ODE C HANGES HANGES • Original lateral system designed Original lateral system designed Original lateral system designed Original lateral system designed O VERVIEW O VERVIEW according to IBC 2000 according to IBC 2000 1997 NEHRP IBC 2000 PROVISIONS • ASCE 7 ASCE 7- -05 is current governing code for 05 is current governing code for seismic seismic IBC 2003/ 2000 NEHRP ASCE 7 ‐ 02 • Result? Result? O S O S PROVISIONS NFPA 5000 2002 NFPA 5000 2002 • Decrease in spectral response Decrease in spectral response acceleration parameters acceleration parameters ASCE 7 ASCE 7 ‐ 05 IBC 2006 Seismic Task Group

  4. B RYAN H ART B RYAN H ART E DENWALD N EW T OWER E DENWALD N EW T OWER S TRUCTURAL O PTION S TRUCTURAL O PTION P ROPOSAL ROPOSAL /G /G OALS OALS Original Design Thesis Design • Redesign and optimize main lateral Redesign and optimize main lateral g g p p O VERVIEW O VERVIEW S s S s 0.210 g 0.178 g force resisting system (MLFSR) for force resisting system (MLFSR) for S 1 0.070 g S 1 0.052 g updated code updated code S ms S ms 0.336 g 0.285 g S m1 S m1 0.168 g 0.125 g S ds 0.224 g S ds 0.190 g • Configure new shear wall design to Configure new shear wall design to S d1 0.112 g S d1 0.083 g reduce torsion as much as possible reduce torsion as much as possible R 5 R 5 I 1.25 I 1.25 Period 1.2 sec Ta 0.73 sec Building Weight 45300 kips Max T 1.23 sec, controls • Use coupling beams at shear wall Use coupling beams at shear wall Building Weight 47000 kips openings openings 0.047 (not greater than) C s 0.017 controls C s 0.022 0.01 (not less than) th floor • Lighting Breadth: Analyze 6 Lighting Breadth: Analyze 6 th floor Base Shear 996.6 kips Base Shear 793.04 kips corridor (assisted living) corridor (assisted living) 20.43 % decrease

  5. B RYAN H ART B RYAN H ART E DENWALD N EW T OWER E DENWALD N EW T OWER S TRUCTURAL O PTION S TRUCTURAL O PTION W ALL ALL L OCATIONS L ATERAL ATERAL S YSTEM OCATIONS YSTEM • (5) 14” simply reinforced shear walls ( ) ( ) (5) 14” simply reinforced shear walls p y p y E XISTING E XISTING C ONDITIONS • (10) 12” simply reinforced shear walls (10) 12” simply reinforced shear walls

  6. B RYAN H ART B RYAN H ART E DENWALD N EW T OWER E DENWALD N EW T OWER S TRUCTURAL O PTION S TRUCTURAL O PTION C ENTER OF M ASS ASS /R /R IGIDITY T ORSION ENTER OF IGIDITY ORSION • Eccentricity of 25 to 30 feet, dependent on Eccentricity of 25 to 30 feet, dependent on y y , , p p E XISTING E XISTING floor floor C ONDITIONS • How much of total shear does torsion How much of total shear does torsion account for? account for?

  7. B RYAN H ART B RYAN H ART E DENWALD N EW T OWER E DENWALD N EW T OWER S TRUCTURAL O PTION S TRUCTURAL O PTION ETABS A NALYSIS ETABS A NALYSIS O O VERVIEW VERVIEW • Method Method Method Method L ATERAL L ATERAL • Input: Input: R EDESIGN • Static load cases, load combinations Static load cases, load combinations • Dynamic Analysis Output: Dynamic Analysis Output: • 12 modes of vibration (building period) 12 modes of vibration (building period) • Member forces & reactions Member forces & reactions • Serviceability design Serviceability design • Sizes & Locations • Sizes & Locations Sizes & Locations Sizes & Locations • Strength design Strength design • Reinforcement Reinforcement

  8. B RYAN H ART B RYAN H ART E DENWALD N EW T OWER E DENWALD N EW T OWER S TRUCTURAL O PTION S TRUCTURAL O PTION ETABS A ETABS A NALYSIS NALYSIS O O VERVIEW VERVIEW • Elements modeled: Elements modeled: Elements modeled: Elements modeled: L ATERAL L ATERAL • Rigid Diaphragms Rigid Diaphragms R EDESIGN • Shear Walls Shear Walls • Coupling Beams Coupling Beams • P Delta Effects P Delta Effects • Non Non- -iterative method iterative method • Cracked section properties Cracked section properties

  9. B RYAN H ART B RYAN H ART E DENWALD N EW T OWER E DENWALD N EW T OWER S TRUCTURAL O PTION S TRUCTURAL O PTION S TATIC TATIC L OAD OAD C C ASES ASES Distribution of Seismic Forces per Floor k Level w x h x w x h x C vx F x M • Seismic Seismic Seismic Seismic L ATERAL L ATERAL *Roof 4301 119.33 12802763957 0.2520 200 23849 • Equivalent Lateral Force Procedure Equivalent Lateral Force Procedure Basic Wind Speed 90 mph R EDESIGN 12 3745 107.33 8307732578 0.1635 130 13919 • ASCE 7 ASCE 7- -05 Chapter 12 05 Chapter 12 Occupancy Category III 11 3636 98.00 6709548696 0.1321 105 10264 Importance Factor 1.15 10 3636 88.67 5620667948 0.1106 88 7780 • Wind Wind Exposure B 9 3636 79.33 4615592398 0.0909 72 5716 • Wind load criteria established Wind load criteria established Topographic Factor (K zt ) 1.0 8 3636 70.00 3698679380 0.0728 58 4042 • Method 2, ASCE 7 Method 2, ASCE 7- -05 Chapter 6 05 Chapter 6 7 3708 60.67 2972668897 0.0585 46 2815 Wind Directionality Factor (K d ) 0.85 • Forces calculated by ETABS • Forces calculated by ETABS Forces calculated by ETABS Forces calculated by ETABS 6 6 3580 3580 50 00 50.00 1984314668 1984314668 0.0391 0 0391 31 31 1549 1549 Gust Factor (both directions) 0.83 5 4999 39.33 2342750996 0.0461 37 1438 4 4396 28.00 1022552292 0.0201 16 447 Internal Pressure Coefficient ± 0.18 3 4960 18.67 617893065.2 0.0122 10 180 2 3642 9.33 104778906.3 0.0021 2 15 *Includes weight of Penthouse Overturning Moment 72014 ft ‐ kips Base Shear 793 kips

  10. B RYAN H ART B RYAN H ART E DENWALD N EW T OWER E DENWALD N EW T OWER S TRUCTURAL O PTION S TRUCTURAL O PTION L OAD OAD C OMBINATIONS OMBINATIONS Load Combo ASCE 7 ‐ 05 Load Combination as Entered in Load Combo ASCE 7 ‐ 05 Load Combination as Reference # Combination ETABS Reference # Combination Entered in ETABS 1 1 Combination 1 1.4D 5 1 Combination 6 0.9D + 1.6W1 2 1 Combination 2 1.2D + 1.6L + 0.5S 5 2 0.9D + 1.6W2 3 1 Combination 4 1.2D + 1.6W1 + L + 0.5S 5 3 0.9D + 1.6W3 • Based on basic combinations from ASCE 7 Based on basic combinations from ASCE 7 Based on basic combinations from ASCE 7- Based on basic combinations from ASCE 7 - L ATERAL L ATERAL 3 2 3 2 1.2D + 1 2D + 1.6W2 1 6W2 + + L L + + 0 5S 0.5S 5 4 5 4 0 9D 0.9D + + 1.6W4 1 6W4 3 3 1.2D + 1.6W3 + L + 0.5S 5 5 0.9D + 1.6W5 05 Chapter 2 05 Chapter 2 3 4 1.2D + 1.6W4 + L + 0.5S 5 6 0.9D + 1.6W6 R EDESIGN 3 5 1.2D + 1.6W5 + L + 0.5S 5 7 0.9D + 1.6W7 3 6 1.2D + 1.6W6 + L + 0.5S 5 8 0.9D + 1.6W8 3 7 1.2D + 1.6W7 + L + 0.5S 5 9 0.9D + 1.6W9 3 8 1.2D + 1.6W8 + L + 0.5S 5 10 0.9D + 1.6W10 • Wind combinations include 4 cases Wind combinations include 4 cases 3 9 1.2D + 1.6W9 + L + 0.5S 5 11 0.9D + 1.6W11 3 10 1.2D + 1.6W10 + L + 0.5S 5 12 0.9D + 1.6W12 described in Chapter 6 described in Chapter 6 3 11 1.2D + 1.6W11 + L + 0.5S 5 13 0.9D ‐ 1.6W1 3 12 1.2D + 1.6W12 + L + 0.5S 5 14 0.9D ‐ 1.6W2 3 13 1.2D ‐ 1.6W1 + L + 0.5S 5 15 0.9D ‐ 1.6W3 3 14 1.2D ‐ 1.6W2 + L + 0.5S 5 16 0.9D ‐ 1.6W4 • Total of 64 Combinations used Total of 64 Combinations used 3 15 1.2D ‐ 1.6W3 + L + 0.5S 5 17 0.9D ‐ 1.6W5 3 16 1.2D ‐ 1.6W4 + L + 0.5S 5 18 0.9D ‐ 1.6W6 3 17 1.2D ‐ 1.6W5 + L + 0.5S 5 19 0.9D ‐ 1.6W7 3 18 1.2D ‐ 1.6W6 + L + 0.5S 5 20 0.9D ‐ 1.6W8 3 19 1.2D ‐ 1.6W7 + L + 0.5S 5 21 0.9D ‐ 1.6W9 3 20 1.2D ‐ 1.6W8 + L + 0.5S 5 22 0.9D ‐ 1.6W10 3 21 1.2D ‐ 1.6W9 + L + 0.5S 5 23 0.9D ‐ 1.6W11 3 22 1.2D ‐ 1.6W10 + L + 0.5S 5 24 0.9D ‐ 1.6W12 3 23 1.2D ‐ 1.6W11 + L + 0.5S 6 1 Combination 7 0.86D + Ex 3 24 1.2D ‐ 1.6W12 + L + 0.5S 6 2 0.86D ‐ Ex 4 1 Combination 5 1.24D + Ex + L + 0.2S 6 3 0.86D + Ey 4 2 1.24D ‐ Ex + L + 0.2S 6 4 0.86D ‐ Ey 4 3 1.24D + Ey + L + 0.2S 4 4 1.24D ‐ Ey + L + 0.2S

  11. B RYAN H ART B RYAN H ART E DENWALD N EW T OWER E DENWALD N EW T OWER S TRUCTURAL O PTION S TRUCTURAL O PTION W ALL ALL D EFLECTION S ERVICEABILITY EFLECTION ERVICEABILITY • Iterative Process: Iterative Process: Iterative Process: Iterative Process: L ATERAL L ATERAL • Multiple solutions Considered Multiple solutions Considered R EDESIGN • Drift/Displacement limits Drift/Displacement limits • Seismic Drift: according to ASCE 7 Seismic Drift: according to ASCE 7- -05 05 12.12.1 12.12.1 • Displacement: H/400 Displacement: H/400

Recommend


More recommend