system modeling
play

System Modeling Introduction Rugby Meta-Model Finite State - PowerPoint PPT Presentation

System Modeling Introduction Rugby Meta-Model Finite State Machines Petri Nets Untimed Model of Computation Synchronous Model of Computation Timed Model of Computation Integration of Computational Models Tightly Coupled Process Networks


  1. System Modeling Introduction Rugby Meta-Model Finite State Machines Petri Nets Untimed Model of Computation Synchronous Model of Computation Timed Model of Computation Integration of Computational Models Tightly Coupled Process Networks

  2. System Modeling MoC Integration 1 Interfaces between MoC Domains ✓✏ ✓✏ ✓✏ ✓✏ MoC A MoC B I 1 ✒✑ ✒✑ ✒✑ ✒✑ ✜ ✜ ▲ ▲ ✓✏ ✓✏ ▲ ✜ ▲ ✜ ▲ ▲ ✜ ✜ ✒✑ ✒✑ I 2 If either MoC A or MoC B are synchronous or timed domains, the interfaces define the time relation between the two domains. A. Jantsch, KTH, Jan-Feb 2005

  3. System Modeling MoC Integration 2 Interfaces between MoC Domains of the same Type intSup ( r, f ) = mapU (1 , f ) with length ( f (¯ e )) = r e ∈ ¯ E, r ∈ N ¯ intSdown ( r, f ) = mapU ( r, f ) with length ( f (¯ a )) = 1 a ∈ ¯ S, r ∈ N ¯ intTup = intSup intTdown = intSdown A. Jantsch, KTH, Jan-Feb 2005

  4. System Modeling MoC Integration 3 Multiple Connected Domains ★✥ ★✥ r 1 MoC B MoC A ✧✦ ✧✦ ❙ ❙ ✡ ❙ ❙ ❙ ✡ ❙ r 3 ❙ ❙ ✡ ❙ r 2 ★✥ ❙ ❙ ✡ r 3 ❙ ❙ ❙ ✡ ❙ MoC C ✧✦ A. Jantsch, KTH, Jan-Feb 2005

  5. System Modeling MoC Integration 4 Interfaces Between MoC Domains from/to Timed Synchronous Untimed Timed - stripT2S stripT2U Synchronous - insertS2T stripS2U Untimed - insertU2T insertU2S A. Jantsch, KTH, Jan-Feb 2005

  6. System Modeling MoC Integration 5 Strip Based Interface Processes: Timed ⇒ Untimed and Synchronous ⇒ Untimed stripT2U () = p where p (ˆ s ) = ˙ s π ( ν, ˆ s ) = � ˆ e i � , ν ( i ) = 1 π ( ν ′ , ˙ s ) = � ˙ a i � � �� if ˙ e i = ⊔ a i = ˙ � ˙ e i � otherwise � 0 if ˙ e i = ⊔ ν ′ ( i ) = 1 otherwise stripS2U = stripT2U A. Jantsch, KTH, Jan-Feb 2005

  7. System Modeling MoC Integration 6 Strip Based Interface Processes: Timed ⇒ Synchronous stripT2S ( λ ) = p where p (ˆ s ) = ¯ s π ( ν, ˆ s ) = � ˆ a i � , ν ( i ) = λ π ( ν ′ , ¯ e i � , ν ′ ( i ) = 1 s ) = � ¯ � ⊔ if strip (ˆ a i ) = �� e i = ¯ lastt (ˆ a i ) otherwise a ∈ ˆ s ∈ ¯ e i ∈ ¯ for λ ∈ N , ˆ E, i ∈ N 0 s, ˆ S, ¯ S, ¯ lastt (ˆ s ) denotes the last non-absent event in signal ˆ s A. Jantsch, KTH, Jan-Feb 2005

  8. System Modeling MoC Integration 7 Insert Based Interface Processes: Untimed ⇒ Synchronous insertU2S ( λ ) = p where p ( ˙ s ) = ¯ s π ( ν, ˙ s ) = � ˙ e i � , ν ( i ) = 1 π ( ν ′ , ¯ a i � , ν ′ ( i ) = λ s ) = � ¯ e i � ⊕ �⊔� λ − 1 ¯ a i = � ˙ s ∈ ˙ a i ∈ ¯ e i ∈ ˙ for λ ∈ N , ˙ E, i ∈ N 0 S, ¯ s, ¯ S, ˙ A. Jantsch, KTH, Jan-Feb 2005

  9. System Modeling MoC Integration 8 Insert Based Interface Processes: Synchronous ⇒ Timed insertS2T ( λ ) = p where p (¯ s ) = ˆ s π ( ν, ¯ s ) = � ¯ e i � , ν ( i ) = 1 π ( ν ′ , ˆ a i � , ν ′ ( i ) = λ s ) = � ˆ e i � ⊕ �⊔� λ − 1 a i = � ¯ ˆ s ∈ ¯ a ∈ ˆ e i ∈ ¯ for λ ∈ N , ¯ E, i ∈ N 0 S, ˆ s, ˆ S, ¯ A. Jantsch, KTH, Jan-Feb 2005

  10. System Modeling MoC Integration 9 Hierarchical Model of Computation Definition: A Hierarchical Model of Computation (HMoC) is a 3-tuple HMoC = ( M, C, O ) , where M is a set of HMoCs or MoCs, each capable of instantiating processes; C is a set of process constructors, each of which, when given constructor specific parameters, instantiates a process; O is a set of process composition operators, each of which, when given processes as arguments, instantiates a new process. With process we mean either an elementary process or a process network. A. Jantsch, KTH, Jan-Feb 2005

  11. System Modeling MoC Integration 10 The Integrated Model of Computation Definition: The Integrated Model of Computation (Integrated MoC) is defined as Integrated HMoC= ( M, C, O ) , where M = { U-MoC, S-MoC, T-MoC } C = { intSup , intSdown , intTup , intTdown , stripT2S , stripT2U , stripS2U , insertS2T , insertU2T , insertU2S } O = {� , ◦ , FB P } A. Jantsch, KTH, Jan-Feb 2005

  12. System Modeling MoC Integration 11 Systems with Multiple Sub-domains S-MoC Domain insertU2T intSup U-MoC S-MoC stripS2U Domain Domain stripT2S insertS2T stripT2U T-MoC T-MoC Domain intTdown Domain Proper interfaces between domains are required. A. Jantsch, KTH, Jan-Feb 2005

  13. System Modeling MoC Integration 12 A Digital Equalizer with two Sub-domains S−MoC Distortion 1 1 1 Button control control 1 1 1 1 stripS2U ◦ I insertU2S U−MoC 1 1 1 1 4096 4096 4096 Filter Analyzer A. Jantsch, KTH, Jan-Feb 2005

  14. System Modeling MoC Integration 13 Connecting MoC Domains Relates Time Structures • Only U-MoC - U-MoC coupling does not couple time structures; • Connecting an U-MoC to a S-MoC imposes the S-MoC time structure on the U-MoC domain. • Interfaces can be modeled to define the time relation. • Interface delays can be modeled stochasticaly or nondeterministically ⋆ Channel behaviour becomes more realistic; ⋆ Time structure relation becomes complex; ⋆ Time structure coupling cannot be avoided; A. Jantsch, KTH, Jan-Feb 2005

  15. System Modeling MoC Integration 14 MoC Interface Refinement Add time interface: to precisely define the time structure relation. The relation can be constant, cyclic, deterministic, or stochastic. Refine the protocol: Define and refine a protocol which allows for reliable communication across the domain boundary with the given time relation. Model the channel delay: If desirable, model the channel delay deterministically or stochastically. A. Jantsch, KTH, Jan-Feb 2005

  16. System Modeling MoC Integration 15 MoC Interface Refinement Example Step 1 - Add time interface MoC A MoC B Q P MoC B MoC A I 1 intTup (3 , f 1 ) intTdown (2 , f 2 ) Q P A. Jantsch, KTH, Jan-Feb 2005

  17. System Modeling MoC Integration 16 MoC Interface Refinement Example Step 2 - Refine the Protocol MoC B MoC A I 1 P 2 Q 2 Q 1 P 1 I 2 A. Jantsch, KTH, Jan-Feb 2005

  18. System Modeling MoC Integration 17 MoC Interface Refinement Example Step 3 - Model the Channel Delay MoC B MoC A D [2 , 5] P 2 I 1 Q 2 Q 1 P 1 D [2 , 5] I 2 A. Jantsch, KTH, Jan-Feb 2005

  19. System Modeling MoC Integration 18 Process Migration between MoC Domains Untimed Domain Synchronous Domain p 1 p 2 p insertU2S p 3 Untimed Domain Synchronous Domain p ′ p insertU2S p 1 p 3 2 A. Jantsch, KTH, Jan-Feb 2005

  20. System Modeling MoC Integration 19 Process Migration Cases 1.a. Untimed to Synchronous/downwards P U ◦ P insertU2S ⇒ P insertU2S ◦ P S b. Synchronous to Untimed/Upwards P insertU2S ◦ P S ⇒ P U ◦ P insertU2S 2.a. Untimed to Timed/downwards P U ◦ P insertU2T ⇒ P insertU2T ◦ P T b. Timed to Untimed/upwards P insertU2T ◦ P T ⇒ P U ◦ P insertU2T 3.a. Synchronous to Timed/downwards P S ◦ P insertS2T ⇒ P insertS2T ◦ P T b. Timed to Synchronous/upwards P insertS2T ◦ P T ⇒ P S ◦ P insertS2T 4.a. Timed to Synchronous/downwards P T ◦ P stripT2S ⇒ P stripT2S ◦ P S b. Synchronous to Timed/upwards P stripT2S ◦ P S ⇒ P T ◦ P stripT2S 5.a. Timed to Untimed/downwards P T ◦ P stripT2U ⇒ P stripT2U ◦ P U b. Untimed to Timed/upwards P stripT2U ◦ P U ⇒ P T ◦ P stripT2U 6.a. Synchronous to Untimed/downwards P S ◦ P stripS2U ⇒ P stripS2U ◦ P U b. Untimed to Synchronous/upwards P stripS2U ◦ P U ⇒ P S ◦ P stripS2U A. Jantsch, KTH, Jan-Feb 2005

  21. System Modeling MoC Integration 20 Helper Processes = mealyS ( g, f, �� ) par c � w ⊕ e if length ( w ) < c where g ( e, w ) = �� otherwise � w ⊕ e if length ( w ) = c f ( e, w ) = ⊥ otherwise = p 2 ◦ p 1 par = zipS () p 1 = mealyS ( g, f, ( �� , 0)) p 2 � ( w ⊕ e, d ) if length ( w ) < d where g (( e, c ) , ( w, d )) = ( �� , c ) otherwise � w ⊕ e if length ( w ) = d f (( e, c ) , ( w, d )) = ⊥ otherwise = mooreS ( g, f, �� ) ser � tail ( w ) if e = ⊥ where g ( e, w ) = tail ( w ) ⊕ e otherwise � head ( w ) if w � = �� f ( w ) = ⊥ otherwise A. Jantsch, KTH, Jan-Feb 2005

  22. System Modeling MoC Integration 21 Case 1.a: Untimed to Synchronous/downward - Stateless Process U-MoC S-MoC Map based process: = mapU ( c, f 1 ) P U P U P insertU2S = insertU2S (1) p I = q 3 ◦ q 2 ◦ q 1 P S = q 1 par c = q 3 ser U-MoC S-MoC = mapS ( f 2 ) q 2  ⊥ if e = ⊥   f 2 ( e ) = P S ⊥ if f 1 ( e ) = �� P insertU2S  f 1 ( e ) otherwise  A. Jantsch, KTH, Jan-Feb 2005

  23. System Modeling MoC Integration 22 Case 1.a: Untimed to Synchronous/downward - Statefull Process P S ( s 1 ) = s 5 where s 5 = q 4 ( s 4 ) s 4 = q 3 ( s 3 , s 2) s 3 = q 2 ( s 2 ) Mealy based process: s 2 = q 1 ( s 1 , s 6 ) s 6 = q 5 ( s 3 ) = mealyU ( γ, g, f, w 0 ) p U = insertU2S (1) p I = q 1 par = scanS ( f 2 , w 0 ) q 2 ✗✔ � ⊥ if e = ⊥ s 3 s 6 where g 2 ( e, w ) = ✖✕ q 5 g ( e, w ) otherwise ✗✔ ✗✔ ✗✔ ✗✔ = mapS ( f 3 ) q 3 � ✖✕ ✖✕ q 2 ✖✕ q 4 ✖✕ q 3 q 1 ⊥ if e = ⊥ s 1 s 5 s 4 where f 3 ( e, w ) = f ( e, w ) otherwise s 2 = q 4 ser = mapS ( γ 5 ) q 5 � ⊥ if e = ⊥ where γ 5 ( e ) = γ ( e ) otherwise A. Jantsch, KTH, Jan-Feb 2005

Recommend


More recommend