system in water distribution
play

system in water distribution network M ASHREKI I SLAM S AMI AGENDA - PowerPoint PPT Presentation

Effective placement of sensors for efficient early warning system in water distribution network M ASHREKI I SLAM S AMI AGENDA Introduction and Problem Statement Methodology Experimentation and Analysis Limitations Key Findings Conclusion


  1. Effective placement of sensors for efficient early warning system in water distribution network M ASHREKI I SLAM S AMI

  2. AGENDA Introduction and Problem Statement Methodology Experimentation and Analysis Limitations Key Findings Conclusion MASHREKI ISLAM SAMI Chalmers 2

  3. Introduction and Problem Statement ▪ Water distribution network is important part of infrastrucutural development for any town/city/country. ▪ Water safety and quality are fundamental to human development and well-being, WHO ▪ UN SDG 6 also prioritizes accessibility and availability of safe driking water MASHREKI ISLAM SAMI Chalmers 3

  4. Problem Statement ▪ Contamination threats between WTP and consumer ▪ Chances of affecting mass population ▪ Uncertainties (Intrusion, micorbial growth, leakage) ❖ In 2007, an outbreak in Nokia, Finland affected 8453 people with waterborne gastroenteritis for pipeline cross-connection. ❖ In 2007, poisoning of water supply caused 71 people poisoned in China. Introduction and Problem Statement MASHREKI ISLAM SAMI Chalmers 4

  5. Problem Statement ▪ Sensors are expensive ▪ Deploying sensors at every node is impractical ▪ Optimization requires vast computional resources A large WDN with 10,000 nodes each contaminated and sensor sampling time is 10 min. 72h simulation will give 4.32 million scenarios of contaminations. Storage capacity required is 173 GB and 200 days to end simulation. Introduction and Problem Statement MASHREKI ISLAM SAMI Chalmers 5

  6. Objective of Study • Event Detection: Using sensor resposne to generate signal for water quality 2. change Sampling 1. Event and Detection • Sampling and Identify: Collecting water Identify sample and testing to identify type of contamination 3. • Biomarkers Biomarks: Tracing source of and Origin contamination and characterization Analysis (Leakage, Roads, fecal sources etc.) Introduction and Problem Statement MASHREKI ISLAM SAMI Chalmers 6

  7. Objective of Study • Event Detection: Using sensor resposne to generate signal for water quality 2. change 1. Event Sampling Detection and • Sampling and Identify: Collecting water Identify sample and testing to identify type of contamination 3. Biomarkers • Biomarks: Tracing source of and Origin contamination and characterization Analysis (Leakage, Roads, fecal sources etc.) Introduction and Problem Statement MASHREKI ISLAM SAMI Chalmers 7

  8. Criteria for Event Detection • Detection time: How quick sensors can response and generate a signal • Detection likelihood: How often and efficiently sensors can detect in corresponding to their placement. • Population size: Number of consumers that may be affected Introduction and Problem Statement MASHREKI ISLAM SAMI Chalmers 8

  9. Research on Sensor Placement Mathematical Algorithms Graph Theory Genetic algorithm Complex Network Theory Linear algebra Greedy algorithm Centrality Matrices Numerical analysis Parallel computing Heuristic approach Stochastic approach Complex methods Fast optimization Critical region optimization Advancement Introduction and Problem Statement MASHREKI ISLAM SAMI Chalmers 9

  10. Methodology ▪ Contamination event simulation using EPANET ▪ Constructing a pilot scaled WDN in laboratory ▪ Analyze real-time data and simulated data ▪ Possible analysis for source back-tracking MASHREKI ISLAM SAMI Chalmers 10

  11. EPANET Simulation ▪ The WDN was modelled in EPANET ▪ Chemical injection at each node ▪ Chemical concentration at each node ▪ Optimization for sensor placement and intrusion point Methodology MASHREKI ISLAM SAMI Chalmers 11

  12. Design of water distribution network Methodology MASHREKI ISLAM SAMI Chalmers 12

  13. EPANET Simulation Intrusion Methodology MASHREKI ISLAM SAMI Chalmers 13

  14. Intrusion N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N18 N19 N20 N21 N22 N23 N24 N25 N26 N27 Node ID Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. N1 5.03 5.04 4.95 3.51 3.51 3.02 3.51 3.51 1.48 0.21 0.21 0 0 0 0 4.83 4.83 0 0.21 0 0 0 0 0 0 0 1.47 N2 0 5.03 4.95 3.51 3.51 3.02 3.51 3.51 1.48 0.21 0.21 0 0 0 0 4.83 4.83 0 0.21 0 0 0 0 0 0 0 1.47 N3 0 0 5.03 3.66 3.66 3.15 3.66 3.66 1.36 0 0 0 0 0 0 5.04 5.04 0 0 0 0 0 0 0 0 0 1.35 N4 0 0 0 5.01 5.02 4.31 5.01 5.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.71 N5 0 0 0 0 5.01 4.31 5.01 5.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.71 N6 0 0 0 0 0 5.01 5.01 5.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N7 0 0 0 0 0 0 5.01 5.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N8 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N9 0 0 0 0 0 0 5.01 5.01 5.02 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.02 N10 0 0 0 0.55 0.55 0.48 4.25 4.25 4.27 5.02 0 0 0 0 0 0.76 0.76 0 0 0 0 0 0 0 0 0 4.26 N11 0 0 0 0.55 0.55 0.48 4.25 4.25 4.27 5.03 5.02 0 0 0 0 0.76 0.76 0 5.03 0 0 0 0 0 0 0 4.26 N12 0 0 0 0.55 0.55 0.48 4.25 4.25 4.27 5.03 5.04 5.03 0 0 0 0.76 0.76 0 5.03 0 0 0 0 0 0 0 4.26 N13 1.29 1.29 1.26 1.16 1.16 1 2.04 2.03 2.04 2.41 2.31 2.31 5.02 0 2.46 1.6 1.6 2.6 2.41 0 0 0.18 0.18 0.18 0.28 0.28 2.04 N14 2.66 2.66 2.59 1.85 1.85 1.59 2.01 2.01 2.02 2.38 2.38 2.39 0 2.46 5.06 2.55 2.55 0 2.38 0 0 0 0 0 0 0 2.02 N15 2.66 2.66 2.59 1.85 1.85 1.59 2.01 2.01 2.02 2.38 2.38 2.39 0 5.04 5.04 2.55 2.55 0 2.38 0 0 0 0 0 0 0 2.02 N16 0 0 0 3.66 3.66 3.15 3.66 3.66 1.36 0 0 0 0 0 0 5.02 5.04 0 0 0 0 0 0 0 0 0 1.35 N17 0 0 0 3.66 3.66 3.15 3.66 3.66 1.36 0 0 0 0 0 0 0 5.02 0 0 0 0 0 0 0 0 0 1.35 N18 0 0 0 0.51 0.51 0.44 3.96 3.96 3.97 4.68 4.49 4.49 0 0 0 0.71 0.71 5.03 4.68 0 0 0.35 0.35 0.35 0.55 0.55 3.97 N19 0 0 0 0.55 0.55 0.48 4.25 4.25 4.27 5.03 0 0 0 0 0 0.76 0.76 0 5.02 0 0 0 0 0 0 0 4.26 N20 0 0 0 0.17 0.17 0.15 1.31 2.74 1.32 1.55 0 0 0 0 0 0.23 0.23 0 1.55 5.02 5.04 2.75 2.75 3.46 4.32 4.32 1.32 Intrusion N21 0 0 0 0.17 0.17 0.15 1.31 2.74 1.32 1.55 0 0 0 0 0 0.23 0.23 0 1.55 0 5.02 2.75 2.75 3.46 4.32 4.32 1.32 N22 0 0 0 0 0 0 0 5.01 0 0 0 0 0 0 0 0 0 0 0 0 0 5.01 5.02 5 0 0 0 N23 0 0 0 0 0 0 0 5.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.01 5 0 0 0 N24 0 0 0 0 0 0 0 5.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N25 0 0 0 0.2 0.2 0.17 1.53 3.2 1.54 1.81 0 0 0 0 0 0.27 0.27 0 1.81 0 0 3.21 3.21 3.2 5.02 5.04 1.54 N26 0 0 0 0.2 0.2 0.17 1.53 3.2 1.54 1.81 0 0 0 0 0 0.27 0.27 0 1.81 0 0 3.21 3.21 3.2 0 5.02 1.54 N27out1 4.8 4.8 4.7 3.35 3.35 2.88 3.44 3.44 1.41 0.2 0.2 0.11 0 0 0.24 4.6 4.6 0 0.2 0 0 0 0 0 0 0 1.4 N28out2 0.71 0.71 0.69 0.72 0.72 0.62 1.71 1.71 1.72 2.02 1.27 1.27 2.76 0.24 1.35 0.98 0.98 1.43 2.02 2.27 2.27 1.34 1.34 1.67 2.1 2.1 1.71 N29out3 0 0 0 0 0 0 0 5.01 0 0 0 0 0 1.35 0 0 0 0 0 0 0 5.02 5.02 5 0 0 0 N31 0 0 0 0 0 0 5.01 5.01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5.01 Total Nodes 6 7 8 20 21 22 25 30 20 16 10 7 2 4 5 18 19 3 15 2 3 9 10 10 6 7 23 contamin- ated Methodology MASHREKI ISLAM SAMI Chalmers 14

  15. 1< Cx <2 mg/l 2< Cx <3 mg/l 3< Cx <4 mg/l Cx >4 mg/l Total Number of Number of Number of Number of Number of times Node Node Node Node times times times times EPANET Simulation Number Number Number Number Contaminated Contaminated Contaminated Contaminated Contaminated N1 2 N1 0 N1 5 N1 5 12 N2 2 N2 0 N2 5 N2 4 11 N3 2 N3 0 N3 5 N3 3 10 N4 0 N4 0 N4 0 N4 5 5 N5 0 N5 0 N5 0 N5 4 4 N6 0 N6 0 N6 0 N6 3 3 ▪ Optimization N7 0 N7 0 N7 0 N7 2 2 N8 0 N8 0 N8 0 N8 1 1 N9 0 N9 0 N9 0 N9 4 4 ▪ Graph Theory N10 0 N10 0 N10 0 N10 5 5 N11 0 N11 0 N11 0 N11 7 7 N12 0 N12 0 N12 0 N12 8 8 ▪ Simple sorting matrix N13 7 N13 10 N13 0 N13 1 18 N14 3 N14 14 N14 0 N14 1 18 ▪ Strategic Decisions N15 3 N15 13 N15 0 N15 2 18 N16 2 N16 0 N16 5 N16 2 9 N17 2 N17 0 N17 5 N17 1 8 N18 0 N18 0 N18 4 N18 5 9 N19 0 N19 0 N19 0 N19 6 6 N20 5 N20 3 N20 1 N20 4 13 N21 5 N21 3 N21 1 N21 3 12 N22 0 N22 0 N22 0 N22 4 4 N23 0 N23 0 N23 0 N23 3 3 N24 0 N24 0 N24 0 N24 1 1 N25 5 N25 0 N25 4 N25 2 11 N26 5 N26 0 N26 4 N26 1 10 N31 2 N31 1 N31 4 N31 3 10 Methodology MASHREKI ISLAM SAMI Chalmers 15

  16. EPANET Simulation • Intrusion Points Upstream • Sensors Location Downstream Methodology MASHREKI ISLAM SAMI Chalmers 16

  17. Scaled WDN Model 50 mm diameter PVC pipes supported on wooden frame and attached with clips. Flexible PVC pipes used for inflow and outflow. Methodology MASHREKI ISLAM SAMI Chalmers 17

Recommend


More recommend