swarm robotics an overview
play

Swarm Robotics an overview Vito Trianni, PhD Institute of - PowerPoint PPT Presentation

Swarm Robotics an overview Vito Trianni, PhD Institute of Cognitive Sciences and Technologies National Research Council vito.trianni@istc.cnr.it swarm robotics swarm robotics studies robotic systems composed of a multitude


  1. Swarm Robotics 
 – an overview – Vito Trianni, PhD Institute of Cognitive Sciences and Technologies National Research Council vito.trianni@istc.cnr.it

  2. swarm robotics • swarm robotics studies robotic systems composed of 
 a multitude of interacting units homogeneous systems or few heterogeneous groups • each unit is relatively simple and inexpensive • • individual limitations, absence of global information limitations can be physical or functional • access to local and incomplete information only • • decentralised control no single point of failure • redundancy is built-in in the system • • expected properties: • parallelism • robustness • adaptivity • scalability • efficiency

  3. swarm robotics • simple individuals and simple behaviours • complexity results from cooperation • research mainly focuses on: development of specific hardware to support • communication and physical interactions development and test of swarm control systems • • problem: how to define individual rules?

  4. design of decentralised systems distributed SWARM WIRELESS • ROBOTICS SENSOR large number of • NETWORKS interconnected agents self-organised • ? DESIGN macroscopic individual PROBLEM behaviour agent rules Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., & Trianni, V. (2015). A Design Pattern for Decentralised Decision Making. PLoS ONE, 10(10), e0140950–18.

  5. design patterns • reusable solutions for a specific class of problems • leverage on the principled understanding of 
 theoretical models of collective systems

  6. what design rationale 
 for robot swarms?

  7. super-organisms

  8. Swarm-Bots (2004)

  9. Swarmanoid (2011)

  10. Kilobots (2014)

  11. Verity Studios (2017)

  12. perspectives • potential application domains • agriculture and precision farming • security, search&rescue • logistics • space exploration • swarm robotics still confined into the lab • more research needed for higher cognitive skills • collective decision-making • task allocation • categorisation • learning

  13. collective decisions

  14. collective decisions • definition : 
 the process that leads a group to identify 
 the best option out of several alternatives • precondition : 
 partial/noisy information about the available alternatives • postcondition : 
 the group (or a large majority) shares the same choice • constraints : 
 individuals cannot know/compare all alternatives

  15. decentralised decision making • best-of- n decision problem • set of n options • each option i has a quality v i • GOAL: select the best (or equal-best) option ? macroscopic individual behaviour agent rules - discover the options which rules should 
 - estimate their qualities each agent follow? - select the best one

  16. design rationale nest-site selection in honeybees + attains near-optimal 
 speed-accuracy tradeoff + no need of direct comparison between option qualities + adaptive mechanisms to tune decision speed and break symmetry deadlocks

  17. collective decisions in bees a swarm needs to select the new nesting site

  18. collective decisions in bees scout bees identify the available alternatives and share information through the ‘waggle dance’

  19. modelling collective decisions committed agents U A uncommitted agents B …

  20. modelling collective decisions U A discovery of alternatives B γ A U A γ B U B

  21. modelling collective decisions U A abandonment of commitment B α A A U α B B U

  22. modelling collective decisions A U A B recruitment to discovered alternatives B ρ A U+A A+A ρ B U+B B+B

  23. nest-site selection model discovery: ˙  Ψ A = γ A Ψ U − α A Ψ A + ρ A Ψ A Ψ U U A  ˙ Ψ B = γ B Ψ U − α B Ψ B + ρ B Ψ B Ψ U U B Ψ U = 1 − Ψ A − Ψ B  abandonment: A U Ψ B σ B A B B U Ψ A σ A recruitment: γ B A+U A+A Ψ A ρ A γ A Ψ B ρ B B+U B+B α A α B U

  24. nest-site selection model discovery: ˙  Ψ A = γ A Ψ U − α A Ψ A + ρ A Ψ A Ψ U U A  ˙ Ψ B = γ B Ψ U − α B Ψ B + ρ B Ψ B Ψ U U B Ψ U = 1 − Ψ A − Ψ B  abandonment: A U Ψ B σ B A B B U Ψ A σ A recruitment: γ B A+U A+A Ψ A ρ A γ A Ψ B ρ B B+U B+B α A α B U

  25. modelling collective decisions A A B switch of alternatives B σ B B+A A+A σ A A+B B+B

  26. nest-site selection model discovery: ˙  = γ A Ψ U − α A Ψ A + ρ A Ψ A Ψ U − ( σ B − σ A ) Ψ A Ψ B Ψ A  U A ˙ = γ B Ψ U − α B Ψ B + ρ B Ψ B Ψ U − ( σ A − σ B ) Ψ A Ψ B Ψ B U B = 1 − Ψ A − Ψ B Ψ U  abandonment: A U Ψ B σ B A B B U Ψ A σ A recruitment: γ B A+U A+A Ψ A ρ A γ A Ψ B ρ B B+U B+B α A α B direct switch: U A+B A+A B+A B+B

  27. nest-site selection model discovery: ˙  = γ A Ψ U − α A Ψ A + ρ A Ψ A Ψ U − ( σ B − σ A ) Ψ A Ψ B Ψ A  U A ˙ = γ B Ψ U − α B Ψ B + ρ B Ψ B Ψ U − ( σ A − σ B ) Ψ A Ψ B Ψ B U B = 1 − Ψ A − Ψ B Ψ U  abandonment: A U Ψ B σ B A B B U Ψ A σ A recruitment: γ B A+U A+A Ψ A ρ A γ A Ψ B ρ B B+U B+B α A α B direct switch: U A+B A+A B+A B+B

  28. nest-site selection model discovery: ˙  = γ A Ψ U − α A Ψ A + ρ A Ψ A Ψ U − ( σ B − σ A ) Ψ A Ψ B Ψ A  U A ˙ = γ B Ψ U − α B Ψ B + ρ B Ψ B Ψ U − ( σ A − σ B ) Ψ A Ψ B Ψ B U B = 1 − Ψ A − Ψ B Ψ U  abandonment: A U Ψ B σ B A B B U Ψ A σ A recruitment: γ B A+U A+A Ψ A ρ A γ A Ψ B ρ B B+U B+B α A α B direct switch: U A+B A+A B+A B+B

  29. T. D. Seeley, P. K. Visscher, T. Schlegel, P. M. Hogan, N. R. Franks, and J. A. R. Marshall, “Stop Signals Provide Cross Inhibition in Collective Decision-Making by Honeybee Swarms”. Science, vol. 335, no. 6064, pp. 108–111, 2012.

  30. modelling collective decisions A A B U cross-inhibition σ A B+A U+A σ B B A+B U+B

  31. nest-site selection model discovery: ˙  Ψ A = γ A Ψ U − α A Ψ A + ρ A Ψ A Ψ U − ( σ A − σ B ) Ψ A Ψ B U A  ˙ Ψ B = γ B Ψ U − α B Ψ B + ρ B Ψ B Ψ U − ( σ B − σ A ) Ψ A Ψ B , U B Ψ U = 1 − Ψ A − Ψ B  abandonment: A U Ψ B σ B B U A B Ψ A σ A recruitment: A+U A+A γ B Ψ A ρ A γ A Ψ B ρ B B+U B+B α A α B direct switch: A+B A+A U B+A B+B

  32. nest-site selection model discovery: ˙  Ψ A = γ A Ψ U − α A Ψ A + ρ A Ψ A Ψ U − σ B Ψ A Ψ B U A  ˙ Ψ B = γ B Ψ U − α B Ψ B + ρ B Ψ B Ψ U − σ A Ψ A Ψ B , U B Ψ U = 1 − Ψ A − Ψ B  abandonment: A U B U A B recruitment: A+U A+A γ B γ A Ψ A ρ A B+U B+B Ψ B ρ B α A Ψ B σ B α B cross-inhibition Ψ A σ A A+B A+U U B+A B+U

  33. nest-site selection model discovery: ˙  Ψ A = γ A Ψ U − α A Ψ A + ρ A Ψ A Ψ U − σ B Ψ A Ψ B U A  ˙ Ψ B = γ B Ψ U − α B Ψ B + ρ B Ψ B Ψ U − σ A Ψ A Ψ B , U B Ψ U = 1 − Ψ A − Ψ B  abandonment: A U B U A B recruitment: A+U A+A γ B γ A Ψ A ρ A B+U B+B Ψ B ρ B α A Ψ B σ B α B cross-inhibition Ψ A σ A A+B A+U U B+A B+U

  34. nest-site selection model discovery: ˙  Ψ A = γ A Ψ U − α A Ψ A + ρ A Ψ A Ψ U − σ B Ψ A Ψ B U A  ˙ Ψ B = γ B Ψ U − α B Ψ B + ρ B Ψ B Ψ U − σ A Ψ A Ψ B , U B Ψ U = 1 − Ψ A − Ψ B  abandonment: A U B U A B recruitment: A+U A+A γ B γ A Ψ A ρ A B+U B+B Ψ B ρ B α A Ψ B σ B α B cross-inhibition Ψ A σ A A+B A+U U B+A B+U

  35. design pattern solution multi-level description of the decision process Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., & Trianni, V. (2015). A Design Pattern for Decentralised Decision Making. PLoS ONE, 10(10), e0140950–18.

  36. design pattern solution multi-level description of the decision process Microscopic Macroscopic Macroscopic description description description infinite-size 
 finite-size 
 agent-based 
 deterministic 
 stochastic 
 stochastic 
 time continuous time continuous time discrete System of ODEs Master equation PFSM A C 1 q j ” =1 P Ψ j P σ j P α 1 ⇢ ˙ 4 n δ P γ 1 Ψ i = γ i Ψ U � α i Ψ i + ρ i Ψ i Ψ U � ∑ j 6 = i σ j Ψ i Ψ j ∑ δ t P ( N , t ) = [ β k � P ( N , t ) Q k ] , 8 N P Ψ 1 P ρ 1 Ψ U = 1 � ∑ i Ψ i k = 1 C U . . . P Ψ n P ρ n P γ n P α n q j ” = n P Ψ j P σ j C n Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., & Trianni, V. (2015). A Design Pattern for Decentralised Decision Making. PLoS ONE, 10(10), e0140950–18.

  37. design pattern solution multi-level description of the decision process A C 1 j ” =1 P Ψ j P σ j q P α 1 P γ 1 P Ψ 1 P ρ 1 C U . . . P Ψ n P ρ n P γ n P α n j ” = n P Ψ j P σ j q C n Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., & Trianni, V. (2015). A Design Pattern for Decentralised Decision Making. PLoS ONE, 10(10), e0140950–18.

Recommend


More recommend