surface reconstruction via mean curvature flow
play

Surface reconstruction via mean curvature flow Emre Baspinar - PowerPoint PPT Presentation

Surface reconstruction via mean curvature flow Emre Baspinar supervised by prof. dr. Giovanna Citti Department of Mathematics, University of Bologna December 6, 2015 Physical motivation Outline Part I Preliminaries Sub-Riemannian geometry


  1. Surface reconstruction via mean curvature flow Emre Baspinar supervised by prof. dr. Giovanna Citti Department of Mathematics, University of Bologna December 6, 2015

  2. Physical motivation

  3. Outline Part I Preliminaries Sub-Riemannian geometry Vanishing viscosity Literature on uniqueness Uniqueness in sub-Riemannian mean curvature flow Part II Bence-Merriman-Osher algorithm Citti-Sarti diffusion driven motion A new diffusion driven motion in Euclidean setting in the sub-Riemannian setting Summary and future work

  4. PART I Uniqueness in the sub-Riemannian mean curvature flow

  5. Preliminaries: SE(2) sub-Riemannian geometry Elements: ( x , y , θ ) ∈ SE(2) Horizontal plane: span { X 1 = cos( θ ) ∂ x + sin( θ ) ∂ y , X 2 = ∂ θ } For u : SE(2) → R horizontal gradient: ∇ h u = ( X 1 u , X 2 u ) horizontal divergence: div h ν = X 1 ν 1 + X 2 ν 2 ( X 1 u , X 2 u ) ∇ h u √ horizontal unit normal: ν h = |∇ h u | = ( X 1 u ) 2 +( X 2 u ) 2 horizontal Laplacian: ∆ h u = X 2 1 u + X 2 2 u � � ∇ h u horizontal mean curvature: K h = div h ( ν h ) = div h |∇ h u |

  6. Preliminaries: SE(2) sub-Riemannian geometry X 3 = − sin( θ ) ∂ x + cos( θ ) ∂ y Elements: ( x , y , θ ) ∈ SE(2) Horizontal plane: span { X 1 = cos( θ ) ∂ x + sin( θ ) ∂ y , X 2 = ∂ θ } For u : SE(2) → R full gradient: ∇ u = ( X 1 u , X 2 u , X 3 u ) full divergence: div ν = X 1 ν 1 + X 2 ν 2 + X 3 ν 3 ( X 1 u , X 2 u , X 3 u ) ∇ u √ full unit normal: ν = |∇ u | = ( X 1 u ) 2 +( X 2 u ) 2 +( X 3 u ) 2 full Laplacian: ∆ u = X 2 1 u + X 2 2 u + X 2 3 u � � ∇ u full mean curvature: K = div( ν ) = div |∇ u | Degenerate!

  7. Preliminaries: SE(2) sub-Riemannian geometry X 3 = − sin( θ ) ∂ x + cos( θ ) ∂ y Elements: ( x , y , θ ) ∈ SE(2) Horizontal plane: span { X 1 = cos( θ ) ∂ x + sin( θ ) ∂ y , X 2 = ∂ θ } For u : SE(2) → R full gradient: ∇ u = ( X 1 u , X 2 u , X 3 u ) full divergence: div ν = X 1 ν 1 + X 2 ν 2 + X 3 ν 3 ( X 1 u , X 2 u , X 3 u ) ∇ u √ full unit normal: ν = |∇ u | = ( X 1 u ) 2 +( X 2 u ) 2 +( X 3 u ) 2 full Laplacian: ∆ u = X 2 1 u + X 2 2 u + X 2 3 u � � ∇ u full mean curvature: K = div( ν ) = div |∇ u | Degenerate! Non-commutative Lie algebra: [ X 1 , X 2 ] = − X 3 = sin( θ ) ∂ x − cos( θ ) ∂ y Challenging but satisfies H¨ ormander condition!

  8. Preliminaries: Sub-Riemannian mean curvature flow  2 � � δ ij − X i uX j u u t = �  X ij u in SE(2) × (0 , ∞ )  |∇ h u | 2 i , j =1  u = u 0 on SE(2) × { 0 }  ( X 1 u ) 2 + ( X 2 u ) 2 = 0 � Characteristic points: |∇ h u | = Global description BUT... Not defined when ∇ h u = 0! Requires regularization

  9. Preliminaries: Vanishing viscosity Regularized equation Degenerate equation   2 2 � � � � X i u ǫ X j u ǫ δ ij − X i uX j u u ǫ X ij u ǫ t = � δ ij − �   u t = X ij u   ǫ 2 + |∇ h u ǫ | 2 |∇ h u | 2 i , j =1 i , j =1 u ǫ ( ., 0) = u 0 ( . )   u ( ., 0) = u 0 ( . )   No characteristic points! Not defined when ∇ h u = 0!

  10. Literature on uniqueness Euclidean, Evans-Spruck and Chen-Giga-Goto Euclidean, Deckelnick Heisenberg group, existence of graph, Capogna-Citti Heisenberg group, axisymmetricity, Ferrari-Liu-Manfredi Problematic with characteristic points! What about general setting?

  11. Uniqueness in vanishing viscosity sense � � � ( u ǫ 1 − u ǫ 2 )( ξ, t ) 1. sup attainable? � � � ξ ∈ SE(2) , 0 ≤ t ≤ T 2. Argue by contradiction: For all M ≥ 0 , there exist ǫ 1 ( M ) and ǫ 2 ( M ) s.t. � � � ( u ǫ 1 − u ǫ 2 )( ξ, t ) � ≥ M ( ǫ 1 − ǫ 2 ) α , sup � � ξ ∈ SE(2) , 0 ≤ t ≤ T employing ω ( ξ, η, t ) = u ǫ 1 ( ξ, t ) − u ǫ 2 ( η, t ) − φ ( ξ, η, t ) , with penalization φ ( ξ, η, t ) = µ 0 + M γ ( ǫ 1 − ǫ 2 ) 1 − γ 2 | ξ − η | γ 2 T ( ǫ 1 − ǫ 2 ) α t .

  12. Remarks on ω and φ Contradictory hypothesis � � � ( u ǫ 1 − u ǫ 2 )( ξ, t ) � ≥ M ( ǫ 1 − ǫ 2 ) α sup � � ξ ∈ SE(2) , 0 ≤ t ≤ T Test function and penalization ω ( ξ, η, t ) = u ǫ 1 ( ξ, t ) − u ǫ 2 ( η, t ) − φ ( ξ, η, t ) φ ( ξ, η, t ) = µ γ ( ǫ 1 − ǫ 2 ) 1 − γ 2 | ξ − η | γ 0 + M 2 T ( ǫ 1 − ǫ 2 ) α t 1 Parameters doubled: Derivatives of | ξ − η | γ 0 2 Penalization with large γ : | ξ − η | 0 → 0 3 Attainability of sup ω : | ξ | �→ ∞ or | η | �→ ∞ 4 Opposite derivatives: D ξ φ = − D η φ 5 Estimates on u ǫ 1 and u ǫ 2 derivatives at (ˆ η, ˆ ξ, ˆ t ) where sup ω = ω (ˆ η, ˆ ξ, ˆ t )

  13. Conclusions from uniqueness � � � ( u ǫ 1 − u ǫ 2 )( ξ, t ) � ≤ M ( ǫ 1 − ǫ 2 ) α sup � � ξ ∈ SE(2) , 0 ≤ t ≤ T 1 � � � ( u ǫ 1 − u ǫ 2 )( ξ, t ) � ≤ M ( ǫ 1 − ǫ 2 ) α sup � � ξ ∈ SE(2) , 0 ≤ t ≤ T = � � � ( u ǫ 1 − u )( ξ, t ) � ≤ M ( ǫ 1 ) α sup as ǫ 2 → 0 � � ξ ∈ SE(2) , 0 ≤ t ≤ T = ⇒ u ǫ 1 → u as ǫ 1 → 0 2 Not dependent on u 0 3 Dependence only on Γ 0 = { ξ ∈ SE(2) | u 0 ( ξ ) = 0 }

  14. PART II A new diffusion driven motion

  15. Bence-Merriman-Osher algorithm � in R n × (0 , ∞ ) u t − ∆ u = 0 u = χ C 0 in C 0 × { t = 0 }

  16. Citti-Sarti diffusion driven motion

  17. A new Euclidean diffusion driven motion = x 0 + tv ν ∈ R n � � x = x 1 , . . . , x n − 1 , x n ( x 1 , . . . , x n − 1 ) New surface definition ∂ C t ≡ { x ∈ R n | �∇ u ( x , t ) , r � = 0 } Gradient along unit normal r = ν = ⇒ v ≈ K as t → 0 Gradient along fixed direction r � r , e n � v ≈ � ν, e n �� ν, r � K as t → 0

  18. A new sub-Riemannian diffusion driven motion � � ξ = x , y , θ ( x , y ) = ξ 0 + tv ν h ∈ SE(2) , X 2 = ∂ θ New surface definition � �∇ h u ( x , t ) , r � = 0 } � ∂ C t ≡ { x ∈ SE(2) Gradient along unit normal r = ν h = ⇒ v ≈ K h as t → 0 Gradient along fixed direction r � r , X 2 � v ≈ � ν, X 2 �� ν, r � K h as t → 0

  19. Summary and future work

  20. Summary and future work Main findings Uniqueness of vanishing viscosity solutions A new diffusion driven motion Future work Implementation of sub-Riemannian mean curvature flow Extension to other Lie groups

  21. Thank you!

Recommend


More recommend