Submodular Streaming in All Its Glory: Tight Approximation, Minimum Memory and Low Adaptive Complexity Ehsan Kazemi 1 , Marko Mitrovic 1 , Morteza Zadimoghaddam 2 , Silvio Lattanzi 2 , Amin Karbasi 1 1 Yale University and 2 Google
Streaming Algorithms Many practical scenarios we need to use streaming algorithms: the data arrives at a very fast pace there is only time to read the data once random access to the entire data is not possible and only a small fraction of the data can be loaded to the main memory Video from “Britain’s Got Talent” Summary � 2
Streaming Algorithms Many practical scenarios we need to use streaming algorithms: the data arrives at a very fast pace there is only time to read the data once random access to the entire data is not possible and only a small fraction of the data can be loaded to the main memory Is it possible to summarize a massive data set “on the fly”, i.e., when at any point of time we have access only to a small fraction of data? Video from “Britain’s Got Talent” Summary � 2
Submodularity � 3
Submodularity s 3 s 1 s 1 s 2 s 2 s 4 A = { s 1 , s 2 } B = { s 1 , s 2 , s 3 , s 4 } � 3
Submodularity s 3 s 1 s 1 s 2 s 2 s 4 A = { s 1 , s 2 } B = { s 1 , s 2 , s 3 , s 4 } Submodularity � 3
Submodularity s 3 s 1 s 1 s s s 2 s 2 s 4 A = { s 1 , s 2 } B = { s 1 , s 2 , s 3 , s 4 } Submodularity ∀ A ⊆ B ⊆ V and s ∈ V \ B � 3
Submodularity s 3 s 1 s 1 s s s 2 s 2 s 4 A = { s 1 , s 2 } B = { s 1 , s 2 , s 3 , s 4 } Submodularity ∀ A ⊆ B ⊆ V and s ∈ V \ B � 3
Submodularity s 3 s 1 s 1 s s s 2 s 2 s 4 A = { s 1 , s 2 } B = { s 1 , s 2 , s 3 , s 4 } Submodularity ∀ A ⊆ B ⊆ V and s ∈ V \ B f ( A ∪ { s } ) − f ( A ) ≥ f ( B ∪ { s } ) − f ( B ) � 3
<latexit sha1_base64="JyjLVSRBfFwbm6a60FXEvYf+hA=">ACnicfVFdaxNBFJ2sXzV+tfroy2AQUpGwK4I+1iriS0mEpA1k13J3cjcdOjO7ztzVxGH/h6/6r/w3zqYRTCteGDice+6dw7l5paSjOP7Via5dv3Hz1s7t7p279+4/2N17eOzK2gqciFKVdpqDQyUNTkiSwmlEXSu8CQ/f9v2T76gdbI0Y1pVmGlYGFlIARSoT0X/zT5PFX7mRf9w/3S3Fw/idfGrINmAHtvU6HSv8y2dl6LWaEgocG6WxBVlHixJobDprXDCsQ5LHAWoAGNLvNr2w1/Gpg5L0obniG+Zv+e8KCdW+k8KDXQmbvca8l/9WY1Fa8zL01VExpx8VFRK04lbzPgc2lRkFoFAMLK4JWLM7AgKCS1tWmcZL4167Z+t5IgUWYCKzBr6LUGszcp8OKGp8SLskJPxyNm3TpwkibxDsMCVk8Cm6HFVqg0j7zKdiFlqYJiS3S5y36nxCWf4QBdcO1ksu3uQqOXwySeJB8fNk7ONzcbYc9Zk9YnyXsFTtgH9iITZhgln1nP9jPiEfvo6NoeCGNOpuZR2yroulvRHzQxA=</latexit> <latexit sha1_base64="JyjLVSRBfFwbm6a60FXEvYf+hA=">ACnicfVFdaxNBFJ2sXzV+tfroy2AQUpGwK4I+1iriS0mEpA1k13J3cjcdOjO7ztzVxGH/h6/6r/w3zqYRTCteGDice+6dw7l5paSjOP7Via5dv3Hz1s7t7p279+4/2N17eOzK2gqciFKVdpqDQyUNTkiSwmlEXSu8CQ/f9v2T76gdbI0Y1pVmGlYGFlIARSoT0X/zT5PFX7mRf9w/3S3Fw/idfGrINmAHtvU6HSv8y2dl6LWaEgocG6WxBVlHixJobDprXDCsQ5LHAWoAGNLvNr2w1/Gpg5L0obniG+Zv+e8KCdW+k8KDXQmbvca8l/9WY1Fa8zL01VExpx8VFRK04lbzPgc2lRkFoFAMLK4JWLM7AgKCS1tWmcZL4167Z+t5IgUWYCKzBr6LUGszcp8OKGp8SLskJPxyNm3TpwkibxDsMCVk8Cm6HFVqg0j7zKdiFlqYJiS3S5y36nxCWf4QBdcO1ksu3uQqOXwySeJB8fNk7ONzcbYc9Zk9YnyXsFTtgH9iITZhgln1nP9jPiEfvo6NoeCGNOpuZR2yroulvRHzQxA=</latexit> <latexit sha1_base64="JyjLVSRBfFwbm6a60FXEvYf+hA=">ACnicfVFdaxNBFJ2sXzV+tfroy2AQUpGwK4I+1iriS0mEpA1k13J3cjcdOjO7ztzVxGH/h6/6r/w3zqYRTCteGDice+6dw7l5paSjOP7Via5dv3Hz1s7t7p279+4/2N17eOzK2gqciFKVdpqDQyUNTkiSwmlEXSu8CQ/f9v2T76gdbI0Y1pVmGlYGFlIARSoT0X/zT5PFX7mRf9w/3S3Fw/idfGrINmAHtvU6HSv8y2dl6LWaEgocG6WxBVlHixJobDprXDCsQ5LHAWoAGNLvNr2w1/Gpg5L0obniG+Zv+e8KCdW+k8KDXQmbvca8l/9WY1Fa8zL01VExpx8VFRK04lbzPgc2lRkFoFAMLK4JWLM7AgKCS1tWmcZL4167Z+t5IgUWYCKzBr6LUGszcp8OKGp8SLskJPxyNm3TpwkibxDsMCVk8Cm6HFVqg0j7zKdiFlqYJiS3S5y36nxCWf4QBdcO1ksu3uQqOXwySeJB8fNk7ONzcbYc9Zk9YnyXsFTtgH9iITZhgln1nP9jPiEfvo6NoeCGNOpuZR2yroulvRHzQxA=</latexit> <latexit sha1_base64="JyjLVSRBfFwbm6a60FXEvYf+hA=">ACnicfVFdaxNBFJ2sXzV+tfroy2AQUpGwK4I+1iriS0mEpA1k13J3cjcdOjO7ztzVxGH/h6/6r/w3zqYRTCteGDice+6dw7l5paSjOP7Via5dv3Hz1s7t7p279+4/2N17eOzK2gqciFKVdpqDQyUNTkiSwmlEXSu8CQ/f9v2T76gdbI0Y1pVmGlYGFlIARSoT0X/zT5PFX7mRf9w/3S3Fw/idfGrINmAHtvU6HSv8y2dl6LWaEgocG6WxBVlHixJobDprXDCsQ5LHAWoAGNLvNr2w1/Gpg5L0obniG+Zv+e8KCdW+k8KDXQmbvca8l/9WY1Fa8zL01VExpx8VFRK04lbzPgc2lRkFoFAMLK4JWLM7AgKCS1tWmcZL4167Z+t5IgUWYCKzBr6LUGszcp8OKGp8SLskJPxyNm3TpwkibxDsMCVk8Cm6HFVqg0j7zKdiFlqYJiS3S5y36nxCWf4QBdcO1ksu3uQqOXwySeJB8fNk7ONzcbYc9Zk9YnyXsFTtgH9iITZhgln1nP9jPiEfvo6NoeCGNOpuZR2yroulvRHzQxA=</latexit> <latexit sha1_base64="uRnSOZXkcndaRjaVnTJE+5nxVNw=">ACs3icfVHLbtNAFJ24PEp4pbBkMxAhIYQiG7WCZSks2KAEKUkrxVZ0Pb5OR50Zm5lrSGp5zdewhW/hbxinQWpaxJVGOjr3debctFTSURj+7gQ7N27eur17p3v3v0HD3t7j6auqKzAiShUYU9ScKikwQlJUnhSWgSdKjxOz963+eOvaJ0szJhWJSYaFkbmUgB5at57GueFBaX4Ox67KnVI+IUfXcLTea8fDsJ18Osg2oA+28Rovtc5j7NCVBoNCQXOzaKwpKQGS1IobLpx5bAEcQYLnHloQKNL6vVfGv7cMxn3ovwzxNfs5Y4atHMrnfpKDXTqruZa8l+5WUX526SWpqwIjbhYlFeKU8FbY3gmLQpSKw9AWOm1cnEKFgR5+7YmjaOkbsW1Y7bWGykw9x2eNfhNFqDyep4WFJTx4RLcqIejsZNvHS+pXiA3qHLH7yaoclWqDCvqxjsAstTeMdW8SvWvS/Qlj+LfSo68VXb3NdTB9PYjCQfR5v394tLnbLnvCnrEXLGJv2CH7yEZswgT7zn6wn+xXcBDMgjTILkqDzqbnMduKQP8B3uTZyQ=</latexit> <latexit sha1_base64="uRnSOZXkcndaRjaVnTJE+5nxVNw=">ACs3icfVHLbtNAFJ24PEp4pbBkMxAhIYQiG7WCZSks2KAEKUkrxVZ0Pb5OR50Zm5lrSGp5zdewhW/hbxinQWpaxJVGOjr3debctFTSURj+7gQ7N27eur17p3v3v0HD3t7j6auqKzAiShUYU9ScKikwQlJUnhSWgSdKjxOz963+eOvaJ0szJhWJSYaFkbmUgB5at57GueFBaX4Ox67KnVI+IUfXcLTea8fDsJ18Osg2oA+28Rovtc5j7NCVBoNCQXOzaKwpKQGS1IobLpx5bAEcQYLnHloQKNL6vVfGv7cMxn3ovwzxNfs5Y4atHMrnfpKDXTqruZa8l+5WUX526SWpqwIjbhYlFeKU8FbY3gmLQpSKw9AWOm1cnEKFgR5+7YmjaOkbsW1Y7bWGykw9x2eNfhNFqDyep4WFJTx4RLcqIejsZNvHS+pXiA3qHLH7yaoclWqDCvqxjsAstTeMdW8SvWvS/Qlj+LfSo68VXb3NdTB9PYjCQfR5v394tLnbLnvCnrEXLGJv2CH7yEZswgT7zn6wn+xXcBDMgjTILkqDzqbnMduKQP8B3uTZyQ=</latexit> <latexit sha1_base64="uRnSOZXkcndaRjaVnTJE+5nxVNw=">ACs3icfVHLbtNAFJ24PEp4pbBkMxAhIYQiG7WCZSks2KAEKUkrxVZ0Pb5OR50Zm5lrSGp5zdewhW/hbxinQWpaxJVGOjr3debctFTSURj+7gQ7N27eur17p3v3v0HD3t7j6auqKzAiShUYU9ScKikwQlJUnhSWgSdKjxOz963+eOvaJ0szJhWJSYaFkbmUgB5at57GueFBaX4Ox67KnVI+IUfXcLTea8fDsJ18Osg2oA+28Rovtc5j7NCVBoNCQXOzaKwpKQGS1IobLpx5bAEcQYLnHloQKNL6vVfGv7cMxn3ovwzxNfs5Y4atHMrnfpKDXTqruZa8l+5WUX526SWpqwIjbhYlFeKU8FbY3gmLQpSKw9AWOm1cnEKFgR5+7YmjaOkbsW1Y7bWGykw9x2eNfhNFqDyep4WFJTx4RLcqIejsZNvHS+pXiA3qHLH7yaoclWqDCvqxjsAstTeMdW8SvWvS/Qlj+LfSo68VXb3NdTB9PYjCQfR5v394tLnbLnvCnrEXLGJv2CH7yEZswgT7zn6wn+xXcBDMgjTILkqDzqbnMduKQP8B3uTZyQ=</latexit> <latexit sha1_base64="uRnSOZXkcndaRjaVnTJE+5nxVNw=">ACs3icfVHLbtNAFJ24PEp4pbBkMxAhIYQiG7WCZSks2KAEKUkrxVZ0Pb5OR50Zm5lrSGp5zdewhW/hbxinQWpaxJVGOjr3debctFTSURj+7gQ7N27eur17p3v3v0HD3t7j6auqKzAiShUYU9ScKikwQlJUnhSWgSdKjxOz963+eOvaJ0szJhWJSYaFkbmUgB5at57GueFBaX4Ox67KnVI+IUfXcLTea8fDsJ18Osg2oA+28Rovtc5j7NCVBoNCQXOzaKwpKQGS1IobLpx5bAEcQYLnHloQKNL6vVfGv7cMxn3ovwzxNfs5Y4atHMrnfpKDXTqruZa8l+5WUX526SWpqwIjbhYlFeKU8FbY3gmLQpSKw9AWOm1cnEKFgR5+7YmjaOkbsW1Y7bWGykw9x2eNfhNFqDyep4WFJTx4RLcqIejsZNvHS+pXiA3qHLH7yaoclWqDCvqxjsAstTeMdW8SvWvS/Qlj+LfSo68VXb3NdTB9PYjCQfR5v394tLnbLnvCnrEXLGJv2CH7yEZswgT7zn6wn+xXcBDMgjTILkqDzqbnMduKQP8B3uTZyQ=</latexit> Submodularity s 3 s 1 s 1 s s s 2 s 2 s 4 A = { s 1 , s 2 } B = { s 1 , s 2 , s 3 , s 4 } Submodularity Monotonicity ∀ A ⊆ B ⊆ V and s ∈ V \ B ∀ A ⊆ B ⊆ V f ( A ) ≤ f ( B ) f ( A ∪ { s } ) − f ( A ) ≥ f ( B ∪ { s } ) − f ( B ) � 3
Recommend
More recommend