maximization of submodular functions seffi naor lecture 1
play

Maximization of Submodular Functions Seffi Naor Lecture 1 4th - PowerPoint PPT Presentation

Maximization of Submodular Functions Seffi Naor Lecture 1 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Maximization of Submodular Functions Submodular Maximization Optimization Problem Family of allowed subsets M 2 N . f


  1. Maximization of Submodular Functions Seffi Naor Lecture 1 4th Cargese Workshop on Combinatorial Optimization Seffi Naor Maximization of Submodular Functions

  2. Submodular Maximization Optimization Problem Family of allowed subsets M ⊆ 2 N . f ( S ) max S ∈ M s . t . Seffi Naor Maximization of Submodular Functions

  3. Submodular Maximization Optimization Problem Family of allowed subsets M ⊆ 2 N . f ( S ) max S ∈ M s . t . Question - how is f given ? Seffi Naor Maximization of Submodular Functions

  4. Submodular Maximization Optimization Problem Family of allowed subsets M ⊆ 2 N . f ( S ) max S ∈ M s . t . Question - how is f given ? Value Oracle Model: Returns f ( S ) for given S ⊆ N . Seffi Naor Maximization of Submodular Functions

  5. Unconstrained Submodular Maximization Definition - Unconstrained Submodular Maximization Input: Ground set N and non-monotone submodular f : 2 N → R + . Goal: Find S ⊆ N maximizing f ( S ) . Seffi Naor Maximization of Submodular Functions

  6. Unconstrained Submodular Maximization Definition - Unconstrained Submodular Maximization Input: Ground set N and non-monotone submodular f : 2 N → R + . Goal: Find S ⊆ N maximizing f ( S ) . 𝑇 Seffi Naor Maximization of Submodular Functions

  7. Undirected Graphs: Cut Function G = ( V , E ) ⇒ N = V , f ( S ) = δ ( S ) . Seffi Naor Maximization of Submodular Functions

  8. Unconstrained Submodular Maximization (Cont.) Captures combinatorial optimization problems: Max-Cut in graphs and hypergraphs. Max-DiCut . Max Facility-Location . Variants of Max-SAT . Seffi Naor Maximization of Submodular Functions

  9. Unconstrained Submodular Maximization (Cont.) Captures combinatorial optimization problems: Max-Cut in graphs and hypergraphs. Max-DiCut . Max Facility-Location . Variants of Max-SAT . Additional settings: Marketing over social networks [Hartline-Mirrokni-Sundararajan-08] Utility maximization with discrete choice [Ahmed-Atamt¨ urk-09] Least core value in supermodular cooperative games [Schulz-Uhan-07] Approximating market expansion [Dughmi-Roughgarden-Sundararajan-09] Seffi Naor Maximization of Submodular Functions

  10. Unconstrained Submodular Maximization (Cont.) Operations Research: [Cherenin-62] [Khachaturov-68] [Minoux-77] [Lee-Nemhauser-Wang-95] [Goldengorin-Sierksma-Tijssen-Tso-98] [Goldengorin-Tijssen-Tso-99] [Goldengorin-Ghosh-04] [Ahmed-Atamt¨ urk-09] Seffi Naor Maximization of Submodular Functions

  11. Unconstrained Submodular Maximization (Cont.) Operations Research: [Cherenin-62] [Khachaturov-68] [Minoux-77] [Lee-Nemhauser-Wang-95] [Goldengorin-Sierksma-Tijssen-Tso-98] [Goldengorin-Tijssen-Tso-99] [Goldengorin-Ghosh-04] [Ahmed-Atamt¨ urk-09] Algorithmic Bounds: 1 / 4 random solution [Feige-Mirrokni-Vondrak-07] 1 / 3 local search [Feige-Mirrokni-Vondrak-07] 2 / 5 non-oblivious local search [Feige-Mirrokni-Vondrak-07] Seffi Naor Maximization of Submodular Functions

  12. Unconstrained Submodular Maximization (Cont.) Operations Research: [Cherenin-62] [Khachaturov-68] [Minoux-77] [Lee-Nemhauser-Wang-95] [Goldengorin-Sierksma-Tijssen-Tso-98] [Goldengorin-Tijssen-Tso-99] [Goldengorin-Ghosh-04] [Ahmed-Atamt¨ urk-09] Algorithmic Bounds: 1 / 4 random solution [Feige-Mirrokni-Vondrak-07] 1 / 3 local search [Feige-Mirrokni-Vondrak-07] 2 / 5 non-oblivious local search [Feige-Mirrokni-Vondrak-07] ≈ 0.41 simulated annealing [Gharan-Vondrak-11] Seffi Naor Maximization of Submodular Functions

  13. Unconstrained Submodular Maximization (Cont.) Operations Research: [Cherenin-62] [Khachaturov-68] [Minoux-77] [Lee-Nemhauser-Wang-95] [Goldengorin-Sierksma-Tijssen-Tso-98] [Goldengorin-Tijssen-Tso-99] [Goldengorin-Ghosh-04] [Ahmed-Atamt¨ urk-09] Algorithmic Bounds: 1 / 4 random solution [Feige-Mirrokni-Vondrak-07] 1 / 3 local search [Feige-Mirrokni-Vondrak-07] 2 / 5 non-oblivious local search [Feige-Mirrokni-Vondrak-07] ≈ 0.41 simulated annealing [Gharan-Vondrak-11] ≈ 0.42 structural similarity [Feldman-N-Schwartz-11] Seffi Naor Maximization of Submodular Functions

  14. Unconstrained Submodular Maximization (Cont.) Operations Research: [Cherenin-62] [Khachaturov-68] [Minoux-77] [Lee-Nemhauser-Wang-95] [Goldengorin-Sierksma-Tijssen-Tso-98] [Goldengorin-Tijssen-Tso-99] [Goldengorin-Ghosh-04] [Ahmed-Atamt¨ urk-09] Algorithmic Bounds: 1 / 4 random solution [Feige-Mirrokni-Vondrak-07] 1 / 3 local search [Feige-Mirrokni-Vondrak-07] 2 / 5 non-oblivious local search [Feige-Mirrokni-Vondrak-07] ≈ 0.41 simulated annealing [Gharan-Vondrak-11] ≈ 0.42 structural similarity [Feldman-N-Schwartz-11] Hardness: Cannot get better than 1 / 2 absolute! [Feige-Mirrokni-Vondrak-07] Seffi Naor Maximization of Submodular Functions

  15. Unconstrained Submodular Maximization (Cont.) Operations Research: [Cherenin-62] [Khachaturov-68] [Minoux-77] [Lee-Nemhauser-Wang-95] [Goldengorin-Sierksma-Tijssen-Tso-98] [Goldengorin-Tijssen-Tso-99] [Goldengorin-Ghosh-04] [Ahmed-Atamt¨ urk-09] Algorithmic Bounds: 1 / 4 random solution [Feige-Mirrokni-Vondrak-07] 1 / 3 local search [Feige-Mirrokni-Vondrak-07] 2 / 5 non-oblivious local search [Feige-Mirrokni-Vondrak-07] ≈ 0.41 simulated annealing [Gharan-Vondrak-11] ≈ 0.42 structural similarity [Feldman-N-Schwartz-11] Hardness: Cannot get better than 1 / 2 absolute! [Feige-Mirrokni-Vondrak-07] Question Is 1 / 2 the correct answer? Seffi Naor Maximization of Submodular Functions

  16. Unconstrained Submodular Maximization (Cont.) Operations Research: [Cherenin-62] [Khachaturov-68] [Minoux-77] [Lee-Nemhauser-Wang-95] [Goldengorin-Sierksma-Tijssen-Tso-98] [Goldengorin-Tijssen-Tso-99] [Goldengorin-Ghosh-04] [Ahmed-Atamt¨ urk-09] Algorithmic Bounds: 1 / 4 random solution [Feige-Mirrokni-Vondrak-07] 1 / 3 local search [Feige-Mirrokni-Vondrak-07] 2 / 5 non-oblivious local search [Feige-Mirrokni-Vondrak-07] ≈ 0.41 simulated annealing [Gharan-Vondrak-11] ≈ 0.42 structural similarity [Feldman-N-Schwartz-11] Hardness: Cannot get better than 1 / 2 absolute! [Feige-Mirrokni-Vondrak-07] Question Is 1 / 2 the correct answer? Yes! [Buchbinder, Feldman, N., Schwartz FOCS 2012] Seffi Naor Maximization of Submodular Functions

  17. Failure of Greedy Approach Greedy: Useful for monotone f (discrete and continuous setting). [Fisher-Nemhauser-Wolsey-78] [Calinescu-Chekuri-Pal-Vondrak-07] Seffi Naor Maximization of Submodular Functions

  18. Failure of Greedy Approach Greedy: Useful for monotone f (discrete and continuous setting). [Fisher-Nemhauser-Wolsey-78] [Calinescu-Chekuri-Pal-Vondrak-07] Fails for Unconstrained Submodular Maximization Greedy is unbounded! Seffi Naor Maximization of Submodular Functions

  19. Failure of Greedy Approach Greedy: Useful for monotone f (discrete and continuous setting). [Fisher-Nemhauser-Wolsey-78] [Calinescu-Chekuri-Pal-Vondrak-07] Fails for Unconstrained Submodular Maximization Greedy is unbounded! Key Insight f ( S ) � f ( N \ S ) is submodular ⇒ f is submodular Optimal solution of f is N \ OPT . Both optima have the same value. Seffi Naor Maximization of Submodular Functions

  20. Failure of Greedy Approach Greedy: Useful for monotone f (discrete and continuous setting). [Fisher-Nemhauser-Wolsey-78] [Calinescu-Chekuri-Pal-Vondrak-07] Fails for Unconstrained Submodular Maximization Greedy is unbounded! Key Insight f ( S ) � f ( N \ S ) is submodular ⇒ f is submodular Optimal solution of f is N \ OPT . Both optima have the same value. Questions: Why start with an empty solution and add elements? Why not start with N and remove elements? Seffi Naor Maximization of Submodular Functions

  21. Attempt I - Geometric Interpretation Seffi Naor Maximization of Submodular Functions

  22. Attempt I - Geometric Interpretation B= 1,1,1 A= 0,0,0 Seffi Naor Maximization of Submodular Functions

  23. Attempt I - Geometric Interpretation ∆ 2 B= 1,1,1 ∆ 1 A= 0,0,0 Seffi Naor Maximization of Submodular Functions

  24. Attempt I - Geometric Interpretation ∆ 2 B= 1,1,1 ∆ 1 > ∆ 2 A= 0,0,0 Seffi Naor Maximization of Submodular Functions

  25. Attempt I - Geometric Interpretation B= 1,1,1 A= 1,0,0 Seffi Naor Maximization of Submodular Functions

  26. Attempt I - Geometric Interpretation B= 1,1,1 ∆ 2 ∆ 1 A= 1,0,0 Seffi Naor Maximization of Submodular Functions

  27. Attempt I - Geometric Interpretation B= 1,1,1 ∆ 1 < ∆ 2 ∆ 1 A= 1,0,0 Seffi Naor Maximization of Submodular Functions

  28. Attempt I - Geometric Interpretation B= 1,0,1 A= 1,0,0 Seffi Naor Maximization of Submodular Functions

  29. Attempt I - Geometric Interpretation B= 1,0,1 ∆ 1 , ∆ 2 A= 1,0,0 Seffi Naor Maximization of Submodular Functions

  30. Attempt I - Geometric Interpretation B= 1,0,1 ∆ 1 , ∆ 2 ∆ 1 > ∆ 2 A= 1,0,0 Seffi Naor Maximization of Submodular Functions

  31. Attempt I - Geometric Interpretation A=B= 1,0,1 Seffi Naor Maximization of Submodular Functions

  32. Attempt I - Geometric Interpretation A=B= 1,0,1 Seffi Naor Maximization of Submodular Functions

  33. Attempt I - Algorithm Notation: N = { u 1 , u 2 , . . . , u n } Algorithm I A ← ∅ , B ← N . 1 for i = 1 to n do : 2 ∆ 1 ← f ( A ∪ { u i } ) − f ( A ) . ∆ 2 ← f ( B \ { u i } ) − f ( B ) . if ∆ 1 � ∆ 2 then A ← A ∪ { u i } . else B ← B \ { u i } . Return A . 3 Seffi Naor Maximization of Submodular Functions

Recommend


More recommend