study of higgs invisible using kinematic fit method
play

Study of Higgsinvisible using kinematic fit method applied jet - PowerPoint PPT Presentation

Study of Higgsinvisible using kinematic fit method applied jet energy resolution of ILD Yu Kato The Univ. of Tokyo Asian Physics and Software Meeting Jan. 19, 2018 Goal of this study 2018/1/19 Study of Higgsinvisible using kin-fit


  1. Study of Higgs→invisible using kinematic fit method applied jet energy resolution of ILD Yu Kato The Univ. of Tokyo Asian Physics and Software Meeting Jan. 19, 2018

  2. Goal of this study 2018/1/19 Study of Higgs→invisible using kin-fit applied JER of ILD 2 Improve analysis performance kinematic fit apply jet energy resolution method

  3. Flow of study Evaluate jet energy resolution ILD model : ILD_l(s)5_v02 evaluate jet angle resolution → apply to kinematic fit kinematic fit use MarlinKinfit - fitter engine : OPALFitter apply jet resolution Improve analysis performance [ BSM search using Higgs→invisible ] 2018/1/19 Study of Higgs→invisible using kin-fit applied JER of ILD 3 Ø jet energy & cosθ dependence Ø check effect & accuracy of fit

  4. Evaluate JER 9k 350 400 500 l5 [events] 10k 10k 10k 10k 10k 10k 10k 10k 9k 10k 10k 240 s5 [events] 10k 10k 10k 10k 9k 10k 10k 9k 10k 10k 10k 10k Update. use jet clustering: Durham 300 200 160 120 91 60 40 30 √s [GeV] Setting of Evaluation JER 4 Study of Jet Resolution 2018/1/19 � l ILCSoft : v01-19-05 (gcc49) l ILDConfig : v01-19-05-p01 l ILD models : ILD_l5_o1_v02, ILD_s5_o1_v02 l samples : Z→uds (/hsm/ilc/grid/storm/prod/ilc/mc-opt.dsk/ild/dst/calib/uds/*) l jet resolution definition ◦ use RMS 90 method ◦ Energy 𝐹 = RMS90 𝐹 RMS90 𝐹 𝜏 " * ** = 2 𝑛𝑓𝑏𝑜 /0 𝐹 𝑛𝑓𝑏𝑜 /0 𝐹 * ** (J. S. Marshall and M. A. Thomson, ”Pandora Particle Flow Algorithm”, arXiv:1308.4537 [physics.ins-det]) ◦ Angle 𝜀𝜚 = RMS90(𝜚 678 − 𝜚 :8 ) 𝜀𝜄 = RMS90(𝜄 678 − 𝜄 :8 )

  5. ILD model Detailed Baseline Design 2018/1/19 Study of Higgs→invisible using kin-fit applied JER of ILD 5 Endcap Barrel θ ILD_l5_v02 ILD_s5_v02 Evaluate JER

  6. Result:Energy dependence 6 2018/1/19 Evaluate JER using kin-fit applied JER of ILD Study of Higgs→invisible sv01-19-05.mILD_l5_o1_v02_nobg 7 ) [%] σ /E = 3.5% E σ /E = 30%/ E E j 6 Overall : (E 31.3/ E -1.97 +0.200 E 90 j j ) / Mean θ Barrel : |cos | < 0.7 5 28.9/ E -1.91 +0.195 E j j θ ≥ Endcap : |cos | 0.7 33.6/ E -1.66 +0.184 E 4 j j j (E 90 RMS 3 0 50 100 150 200 250 E [GeV] j

  7. Result : energy & angle dependence 2018/1/19 apply this result to kinematic fit Evaluate JER 7 using kin-fit applied JER of ILD Study of Higgs→invisible sv01-19-05.mILD_l5_o1_v02_nobg 15 15GeV ) [%] 20GeV 30GeV j (E 45.5GeV 90 10 60GeV ) / Mean 80GeV 100GeV 120GeV 5 150GeV j (E 175GeV 90 200GeV RMS 250GeV 0 0 0.2 0.4 0.6 0.8 1 θ |cos |

  8. Anglar resolution azimuth angle use jet clustering. For evaluation of angular resolution, Evaluate JER Durham algorithm 2018/1/19 apply this result to kinematic fit polar angle Study of Higgs→invisible using kin-fit applied JER of ILD 8 𝜀𝜄 = 𝑆𝑁𝑇 /0 (𝜄 678 − 𝜄 :8 ) 𝜀𝜚 ∗ 𝑡𝑗𝑜𝜄 = 𝑆𝑁𝑇 /0 { 𝜚 678 − 𝜚 :8 𝑡𝑗𝑜𝜄} sv01-19-05.mILD_l5_o1_v02_nobg sv01-19-05.mILD_l5_o1_v02_nobg 0.08 0.08 15GeV 15GeV MC θ *sin 20GeV 20GeV θ - 30GeV 30GeV φ 0.06 0.06 REC 45.5GeV 45.5GeV δ 60GeV 60GeV θ 80GeV = 80GeV 0.04 0.04 100GeV 100GeV θ δ 120GeV 120GeV 150GeV 150GeV 0.02 175GeV 0.02 175GeV 200GeV 200GeV 250GeV 250GeV 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 θ θ |cos | |cos |

  9. Principle of kinematic fit 2018/1/19 Study of Higgs→invisible using kin-fit applied JER of ILD 9 seek minimum of under kinematic constraints method of Lagrange multipliers d.o.f.: kinematic fit

  10. MarlinKinfit : OPALFitter 2018/1/19 Study of Higgs→invisible using kin-fit applied JER of ILD 10 For iterative solution : Taylor-expansion of the constraints Convergence condition or kinematic fit ü 𝜀𝜓 F < 0.01% ∩ 𝜀𝐺 N < 10 OP N < 10 OF Q 𝜓 F ∩ 𝐺 S < 10 OT ∩ 𝜀 𝜃, 𝜊, 𝜇 < 10 OT ü all 𝑔

  11. ZH processor 11 invisible X X q q kinematic fit using kin-fit applied JER of ILD Study of Higgs→invisible 2018/1/19 sv01-19-05.mILD_l5_o1_v02_nobg 15 15GeV ) [%] 20GeV 30GeV j (E 45.5GeV 90 10 60GeV ) / Mean 80GeV 100GeV 120GeV 5 150GeV j (E 175GeV 90 200GeV RMS 250GeV 0 0 0.2 0.4 0.6 0.8 1 !" H → XX ~???% θ |cos | sv01-19-05.mILD_l5_o1_v02_nobg 0.08 15GeV MC 20GeV p Z mass constraint θ - 30GeV 0.06 REC 45.5GeV 60GeV θ 80GeV = 0.04 100GeV θ δ 120GeV 150GeV p jet mass constraint 0.02 175GeV 200GeV 250GeV 0 0 0.2 0.4 0.6 0.8 1 θ |cos | p Implement of jet resolution sv01-19-05.mILD_l5_o1_v02_nobg 0.3 15GeV MC 20GeV φ 0.25 - 30GeV REC 45.5GeV 0.2 60GeV p degrees of freedom φ 80GeV = 0.15 100GeV φ δ 120GeV 0.1 150GeV 175GeV 0.05 200GeV 250GeV 0 0 0.2 0.4 0.6 0.8 1 θ |cos |

  12. Result:accuracy of fit fit probability Mean > Ndof Ndof :1 Mean:14.5 a possibility of underestimating parameter error →normal distributed between 0 and 1 fit with well-estimated errors ←peak around0 2018/1/19 kinematic fit 12 Study of Higgs→invisible using kin-fit applied JER of ILD sv01-19-05.mILD_o1_v05.eL.pR sv01-19-05.mILD_o1_v05.eL.pR Events / 2.00 4 OPALFitter 10 fit success : 99.85 % mean = 14.453 sigma = 46.970 3 10 2 10 sv01-19-05.mILD_o1_v05.eL.pR sv01-19-05.mILD_o1_v05.eL.pR 10 Events / 0.01 4 10 OPALFitter fit success : 99.85 % mean = 0.278 1 sigma = 0.313 0 500 1000 1500 2000 χ 2 3 10 χ 2 distribution 2 10 0 0.2 0.4 0.6 0.8 1 Fit Probability

  13. Result:Recoil mass 2018/1/19 improve recoil mass resolution ~20% ↓ISR effect kinematic fit Study of Higgs→invisible using kin-fit applied JER of ILD 13 sv01-19-05.mILD_o1_v05.eL.pR sv01-19-05.mILD_o1_v05.eL.pR OPALFitter success : 99.85 % Events / 0.50 GeV 4000 MC: mode = 125.2 sigma = 6.379 3000 2000 1000 0 100 110 120 130 140 150 160 Recoil Mass [GeV] sv01-19-05.mILD_o1_v05.eL.pR sv01-19-05.mILD_o1_v05.eL.pR sv01-19-05.mILD_o1_v05.eL.pR OPALFitter success : 99.85 % OPALFitter success : 99.85 % Events / 0.50 GeV Events / 0.01 before fit: before fit: 1200 600 mean = 130.1 mean = 8.4e-03 sigma = 12.076 sigma = 8.8e-02 1000 after fit: after fit: 800 400 mean = 129.0 mean = -3.3e-04 sigma = 10.496 sigma = 6.9e-02 600 400 200 200 0 0 − − 100 110 120 130 140 150 160 1 0.5 0 0.5 1 Recoil Mass [GeV] Recoil Mass Relative Error

  14. Problems : Z mass distribution 2018/1/19 Error??? kinematic fit 14 Study of Higgs→invisible using kin-fit applied JER of ILD sv01-19-05.mILD_o1_v05.eL.pR OPALFitter success : 99.85 % Events / 0.50 GeV MC: before fit: 4 10 mean = 90.9 mean = 90.7 sigma = 5.338 sigma = 10.091 3 10 after fit: mean = 91.3 2 10 sigma = 1.271 10 1 70 80 90 100 110 120 M [GeV] Z

  15. 0.95% : 0.69% q Z Z ν ν ν X X ν q q 15 Study of Higgs->invisible using kinematic fit 2018/1/19 Motivation Previous study (A.Ishikawa) (95% CL, 250fb -1 ) it signifies new physics beyond SM (BSM) left pol. : right pol. q l In SM, Higgs decays invisibly through H → ZZ ∗ → 4𝜉 (BR(H → 𝑗𝑜𝑤.)~0.1%) l If BR(H → 𝑗𝑜𝑤.) exceeds SM prediction , l We estimate SM upper limit of BR(H → 𝑗𝑜𝑤.) Dark Matter… SUSY… l Compare between left & right polarization at the ILC invisible BSM invisible 𝐶𝑆 H → ZZ ∗ → 4𝜉 ~0.1% 𝐶𝑆 H → XX ~? ? ? % visible visible Ø A. Ishikawa (Tohoku Univ.), ”Search for Invisible Higgs Decays at the ILC” LCWS2014@Belgrade

  16. Cut table 2018/1/19 Study of Higgs→invisible using kin-fit applied JER of ILD 16 w/o kinematic fit w/ kinematic fit Higgs→invisible 7 e , 𝑄 7 f = −0.8, +0.3 𝑄

  17. Cut table 2018/1/19 Study of Higgs→invisible using kin-fit applied JER of ILD 17 w/o kinematic fit w/ kinematic fit Higgs→invisible 7 e , 𝑄 7 f = +0.8, −0.3 𝑄

  18. Higgs→invisible 2018/1/19 w/ kinematic fit w/o kinematic fit significance=16.26 significance=19.72 significance=20.81 significance=15.54 Result:Recoil mass distribution using kin-fit applied JER of ILD Study of Higgs→invisible Right polarization Left polarization 18 ∫ ∫ - - + -1 w/o kinematic fit + -1 s = 250 GeV, (Pe ,Pe ) = (-0.8,+0.3), L dt = 250 fb , Cut: No.1~No.9 s = 250 GeV, (Pe ,Pe ) = (-0.8,+0.3), L dt = 250 fb , Cut: No.1~No.9 w/ kinematic fit Events / 2.00 GeV Events / 2.00 GeV → → H inv. H inv. 2500 2500 BR = 10% BR = 10% qqH,SM qqH,SM 2000 2000 ZZ ZZ 1500 WW 1500 WW ν ν ν ν Z Z 1000 other bkg 1000 other bkg 500 500 0 0 100 110 120 130 140 150 160 100 110 120 130 140 150 160 kf M [GeV] M [GeV] recoil recoil ∫ ∫ - + -1 w/o kinematic fit - s = 250 GeV, (Pe ,Pe ) = (+0.8,-0.3), L dt = 250 fb , Cut: No.1~No.9 + -1 s = 250 GeV, (Pe ,Pe ) = (+0.8,-0.3), L dt = 250 fb , Cut: No.1~No.9 w/ kinematic fit Events / 2.00 GeV Events / 2.00 GeV → → H inv. H inv. BR = 10% BR = 10% 800 800 qqH,SM qqH,SM ZZ ZZ 600 600 WW WW ν ν ν ν Z Z 400 400 other bkg other bkg 200 200 0 0 100 110 120 130 140 150 160 100 110 120 130 140 150 160 M [GeV] kf M [GeV] recoil recoil

Recommend


More recommend