structured matrix methods for polynomial computations
play

Structured matrix methods for polynomial computations Joab R. - PowerPoint PPT Presentation

Structured matrix methods for polynomial computations Joab R. Winkler Department of Computer Science The University of Sheffield United Kingdom Structured Matrix Days, Limoges, France. May 2012 Contents


  1. ✬ ✩ Structured matrix methods for polynomial computations Joab R. Winkler Department of Computer Science The University of Sheffield United Kingdom Structured Matrix Days, Limoges, France. May 2012 ✫ ✪

  2. ✬ ✩ Contents • Introduction – Difficulties of performing reliable computations on polynomials – The condition number of a root of a polynomial • Multiple roots • The geometry of multiple roots • A simple polynomial root finder – GCD computations – Polynomial division • Examples • Summary ✫ ✪ 1

  3. ✬ ✩ 1. INTRODUCTION Problems in which it is required to compute the greatest common divisor (GCD) of two polynomials, and the roots of polynomials: • Computer-aided geometric design: The calculation of the points of intersection of curves and surfaces • Control theory • Cryptography ✫ ✪ 2

  4. ✬ ✩ 1.1 Difficulties of performing reliable computations on polynomials Commonly used methods and algorithms for computing the roots of a polynomial include: • Bairstow, Graeffe, Jenkins-Traub, Laguerre, M¨ uller, Newton, QR decomposition Commonly used software for computing the roots of a polynomial include: • M ATHEMATICA , M ATLAB , NAG, MPS OLVE Satisfactory results are obtained if: • The polynomial is of moderate degree • The roots are simple and well-separated • A good starting point in the iterative scheme is used ✫ ✪ 3

  5. ✬ ✩ Example 1.1 Consider the polynomial y 4 − 4 y 3 + 6 y 2 − 4 y + 1 = ( y − 1) 4 whose root is y = 1 with multiplicity 4 . M ATLAB returns the roots 1.0000 ± 0.0002 i , � 1.0002, 0.9998 Example 1.2 The roots of the polynomial ( y − 1) 100 were computed by M ATLAB . 4 Figure 1.1: The 3 2 computed roots of 1 Imag ( y − 1) 100 . 0 −1 −2 −3 −4 0 1 2 3 4 5 6 Real � ✫ ✪ 4

  6. ✬ ✩ Example 1.3 The computation of multiple roots in the presence of noise. f(x) = (x−0.6) 3 (x−1) 5 ε c = 1e−007 f(x) = (x−0.7) 3 (x−1) 5 ε c = 1e−007 0.08 0.1 0.06 0.04 0.05 0.02 Imag Imag 0 0 −0.02 −0.04 −0.05 −0.06 −0.08 −0.1 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 0.7 0.8 0.9 1 1.1 Real Real f(x) = (x−0.8) 3 (x−1) 5 ε c = 1e−007 f(x) = (x−0.9) 3 (x−1) 5 ε c = 1e−007 0.15 0.15 0.1 0.1 0.05 0.05 0 0 Imag Imag −0.05 −0.05 −0.1 −0.1 −0.15 −0.15 −0.2 −0.2 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 0.8 0.9 1 1.1 1.2 1.3 Real Real ✫ ✪ � Figure 1.2: The distribution of the roots of four perturbed polynomials. 5

  7. ✬ ✩ Example 1.4 Consider the polynomial ( y − 1) 100 and perturb the constant term by 2 − 100 g ( y ) = ( y − 1) 100 − 2 − 100 The roots of g ( y ) are y k = 1 + 1 � � 2 kπ � � 2 kπ �� cos + i sin , k = 0 , . . . , 99 2 100 100 A change in the constant coefficient of 2 − 100 ≈ 10 − 32 causes a change in the � magnitude of the roots from 1 to 1.5. ✫ ✪ 6

  8. ✬ ✩ 2. MULTIPLE ROOTS Consider the polynomial m � a i y m − i f ( y ) = i =0 that has a root of multiplicity r f ( k ) ( y ) = 0 , f (0) ( y ) = f ( y ) , k = 0 , . . . , r − 1 • Why are multiple roots ill -conditioned? • Are there conditions for which they are well-conditioned, and can they be utilised in a stable algorithm for their computation? ✫ ✪ 7

  9. ✬ ✩ Example 2.1 componentwise noise amplitude componentwise signal amplitude = 10 − 8 ε c = exact exact computed computed relative root mult. root mult. error -6.7547e-01 4 -6.7547000082e-01 4 1.2139725913e-09 5.7335e+00 6 5.7335000822e+00 6 1.4344694923e-08 2.1747e+00 7 2.1746999924e+00 7 3.5069931355e-09 -9.5568e+00 10 -9.5567996740e+00 10 3.4111255034e-08 -6.5553e+00 11 -6.5553001701e+00 11 2.5954947075e-08 � ✫ ✪ 8

  10. ✬ ✩ Example 2.2 componentwise noise amplitude componentwise signal amplitude = 10 − 8 ε c = exact exact computed computed relative root mult. root mult. error -1.1539e+00 4 -1.1539000316e+00 4 2.7389266674e-08 4.0809e+00 5 4.0808998890e+00 5 2.7198581384e-08 -2.1059e+00 6 -2.1058999294e+00 6 3.2521823798e-08 3.6683e+00 7 3.6683000481e+00 7 1.3110114060e-08 -9.6084e+00 13 -9.6084001121e+00 13 1.1664214687e-08 � ✫ ✪ 9

  11. ✬ ✩ 3. THE GEOMETRY OF MULTIPLE ROOTS William Kahan (UC Berkeley) showed it is necessary to distinguish between a random perturbation, and a structured perturbation, applied to the coefficients of a polynomial f ( y ) when considering the numerical condition of its roots. Let the root y i of f ( y ) have multiplicity m i : m r r a i y m − i = � � � ( y − y i ) m i , f ( y ) = m i = m i =0 i =1 i =1 Consider the perturbed polynomials g ( y ) and h ( y ) : m � ( a i + δa i ) y m − i , g ( y ) = | δa i | ≤ ε | a i | i =0 r ( y − ( y i + δy i )) m i , � h ( y ) = | δy i | ≪ | y i | i =1 ✫ ✪ 10

  12. ✬ ✩ • Consider the polynomial g ( y ) m � ( a i + δa i ) y m − i , g ( y ) = | δa i | ≤ ε | a i | i =0 If the roots of g ( y ) are y i + δy i , then the roots y i are ill -conditioned. ∆ y i ∆ y i = | δy i | ≫ 1 , | y i | , i = 1 , . . . , m ε • Consider the polynomial h ( y ) r ( y − ( y i + δy i )) m i , � h ( y ) = | δy i | ≪ | y i | i =1 Then ∆ y i ∆ y i = | δy i | ∆ f = || f − h � ∆ f = 0(1) , | y i | , i = 1 , . . . , r, � f � ✫ ✪ 11

  13. ✬ ✩ Summary: • If random perturbations are applied to the coefficients of a polynomial f ( y ) , then its multiple roots are ill -conditioned and break up into complex conjugate simple roots. • If structured perturbations are applied to the coefficients of f ( y ) , such that the multiplicities of its roots are preserved, then its roots are stable. Kahan introduced the pejorative manifold of f ( y ) : r m r ( y − y i ) m i = � � � a i y m − i , f ( y ) = m i = m i =1 i =0 i =1 • The pejorative manifold of f ( y ) defines the constraints satisfied by the coeffi- cients a i such that the multiplicities of its roots are m i . ✫ ✪ 12

  14. ✬ ✩ Example 3.1 Consider a quartic polynomial f ( y ) with real roots y 1 , y 2 , y 3 and y 4 : y 4 − ( y 1 + y 2 + y 3 + y 4 ) y 3 + f ( y ) = ( y 1 y 2 + y 1 y 3 + y 1 y 4 + y 2 y 3 + y 2 y 4 + y 3 y 4 ) y 2 − ( y 1 y 2 y 3 + y 1 y 2 y 4 + y 1 y 3 y 4 + y 2 y 3 y 4 ) y + y 1 y 2 y 3 y 4 • If f ( y ) has a quartic root, then y 1 = y 2 = y 3 = y 4 , then f ( y ) = y 4 − 4 y 1 y 3 + 6 y 2 1 y 2 − 4 y 3 1 y + y 4 1 The pejorative manifold of this quartic polynomial is � � 6 y 2 − 4 y 3 y 4 − 4 y 1 1 1 1 ✫ ✪ 13

  15. ✬ ✩ • If f ( y ) has one treble root and one simple root, then y 1 = y 2 = y 3 � = y 4 , then f ( y ) = y 4 − (3 y 1 + y 4 ) y 3 + 3( y 2 1 + y 1 y 4 ) y 2 − ( y 3 1 + 3 y 2 1 y 4 ) y + y 3 1 y 4 The pejorative manifold of this quartic polynomial is � � 3( y 2 − ( y 3 1 + 3 y 2 y 3 − (3 y 1 + y 4 ) 1 + y 1 y 4 ) 1 y 4 ) 1 y 4 • If f ( y ) has two double roots, then y 1 = y 2 and y 3 = y 4 � = y 1 , then y 4 − 2( y 1 + y 4 ) y 3 + ( y 2 1 + 4 y 1 y 4 + y 2 4 ) y 2 f ( y ) = − 2( y 2 1 y 4 + y 1 y 2 4 ) y + y 2 1 y 2 4 The pejorative manifold of this quartic polynomial is � � ( y 2 1 + 4 y 1 y 4 + y 2 − 2( y 2 1 y 4 + y 1 y 2 y 2 1 y 2 − 2( y 1 + y 4 ) 4 ) 4 ) 4 � ✫ ✪ 14

  16. ✬ ✩ 4. A SIMPLE POLYNOMIAL ROOT FINDER Gauss developed a polynomial root finder that is fundamentally different from the methods mentioned earlier. Let w 1 ( y ) be the product of all linear factors of f ( y ) Let w 2 ( y ) be the product of all quadratic factors of f ( y ) · · · Let w i ( y ) be the product of all factors of degree i of f ( y ) f ( y ) = w 1 ( y ) w 2 2 ( y ) w 3 3 ( y ) · · · w r r ( y ) ✫ ✪ 15

  17. ✬ ✩ Perform a sequence of GCD computations: f ( y ) , f (1) ( y ) w 2 ( y ) w 2 3 ( y ) w 3 4 ( y ) · · · w r − 1 � � q 1 ( y ) = = ( y ) GCD r � � q 1 ( y ) , q (1) w 3 ( y ) w 2 4 ( y ) w 3 5 ( y ) · · · w r − 2 q 2 ( y ) = 1 ( y ) = ( y ) GCD r � � q 2 ( y ) , q (1) w 4 ( y ) w 2 5 ( y ) w 3 6 ( y ) · · · w r − 3 q 3 ( y ) = 2 ( y ) = ( y ) GCD r � � q 3 ( y ) , q (1) w 5 ( y ) w 2 6 ( y ) w 3 7 ( y ) · · · w r − 4 q 4 ( y ) = 3 ( y ) = ( y ) GCD r . . . The sequence terminates at q r ( y ) , which is a constant ✫ ✪ 16

  18. ✬ ✩ A set of polynomials h i ( y ) , i = 1 , . . . , r, is defined such that f ( y ) h 1 ( y ) = = w 1 ( y ) w 2 ( y ) w 3 ( y ) · · · q 1 ( y ) q 1 ( y ) h 2 ( y ) = = w 2 ( y ) w 3 ( y ) · · · q 2 ( y ) q 2 ( y ) h 3 ( y ) = = w 3 ( y ) · · · q 3 ( y ) . . . q r − 1 ( y ) h r ( y ) = = w r ( y ) q r ( y ) The functions, w 1 ( y ) , w 2 ( y ) , · · · , w r ( y ) , are determined from w 1 ( y ) = h 1 ( y ) w 2 ( y ) = h 2 ( y ) w r − 1 ( y ) = h r − 1 ( y ) h 2 ( y ) , h 3 ( y ) , · · · , h r ( y ) until w r ( y ) = h r ( y ) ✫ ✪ 17

  19. ✬ ✩ The equations w 1 ( y ) = 0 , w 2 ( y ) = 0 , · · · , w r ( y ) = 0 contain only simple roots, and they yield the simple, double, triple, etc. roots of f ( y ) • If y 0 is a root of w i ( y ) , then it is a root of multiplicity i of f ( y ) � • This is a divide -and-conquer algorithm. • The multiplicities of the roots are defined by the values of the subscripts i of the polynomials w i ( y ) . • There are two essential operations – GCD computations – Polynomial divisions ✫ ✪ but these operations are ill-posed. 18

Recommend


More recommend