Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria C-Stratification [DeutschNR08,MeierSL09] Builds a c-chase graph G c (Σ) = (Σ , E ) representing how constraints fire each other. ( r 1 , r 2 ) ∈ E if r 1 ≺ c r 2 (firing r 1 can cause r 2 to fire) ∗ , r 1 , h 1 K 2 , 1) K 1 → r 1 ≺ c r 2 if: 2) K 2 �| = h 2 ( r 2 ) , 3) K 1 | = h 2 ( r 2 ) . S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria C-Stratification [DeutschNR08,MeierSL09] (C-Stratification) A set of constraint Σ is c-stratified if every cycle in the c-chase graph is weakly acyclic. Example Σ = { r : T ( x , y ) ∧ T ( y , x ) → ∃ z T ( y , z ) ∧ T ( z , x ) } we have that r ≺ c r and { r } is not weakly acyclic Figure: Dependency graph Dep (Σ) S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria C-Stratification versus Stratification C-Stratification Stratification r 1 ≺ c r 2 if: r 1 ≺ r 2 if: ∗ , r 1 , h 1 K 2 , r 1 , h 1 K 2 , 1) K 1 → 1) K 1 → 2) K 2 �| = h 2 ( r 2 ) , 2) K 2 �| = h 2 ( r 2 ) , 3) K 1 | = h 2 ( r 2 ) . 3) K 1 | = h 2 ( r 2 ) . S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria C-Stratification versus Stratification C-Stratification Stratification r 1 ≺ c r 2 if: r 1 ≺ r 2 if: ∗ , r 1 , h 1 K 2 , r 1 , h 1 K 2 , 1) K 1 → 1) K 1 → 2) K 2 �| = h 2 ( r 2 ) , 2) K 2 �| = h 2 ( r 2 ) , 3) K 1 | = h 2 ( r 2 ) . 3) K 1 | = h 2 ( r 2 ) . Stratification guarantees the termination of at least one chase sequence. S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Example: Stratification Example r 1 : R ( x ) → ∃ y T ( x , y ) Σ = r 2 : R ( x ) → T ( x , x ) r 3 : T ( x , y ) ∧ T ( x , x ) → R ( y ) S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Example: Stratification Example r 1 : R ( x ) → ∃ y T ( x , y ) Σ = r 2 : R ( x ) → T ( x , x ) r 3 : T ( x , y ) ∧ T ( x , x ) → R ( y ) r 1 �≺ r 3 because S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Example: Stratification Example r 1 : R ( x ) → ∃ y T ( x , y ) Σ = r 2 : R ( x ) → T ( x , x ) r 3 : T ( x , y ) ∧ T ( x , x ) → R ( y ) r 1 �≺ r 3 because if K 1 = { R ( a ) } then K 2 = { R ( a ) , T ( a , η 1 ) } | = r 3 1 (because T ( a , a ) �∈ K 2 ) S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Example: Stratification Example r 1 : R ( x ) → ∃ y T ( x , y ) Σ = r 2 : R ( x ) → T ( x , x ) r 3 : T ( x , y ) ∧ T ( x , x ) → R ( y ) r 1 �≺ r 3 because if K 1 = { R ( a ) } then K 2 = { R ( a ) , T ( a , η 1 ) } | = r 3 1 (because T ( a , a ) �∈ K 2 ) if K 1 = { R ( a ) , T ( a , a ) } then K 1 | = Σ ( K 1 universal solution) 2 S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Example: Stratification Example r 1 : R ( x ) → ∃ y T ( x , y ) Σ = r 2 : R ( x ) → T ( x , x ) r 3 : T ( x , y ) ∧ T ( x , x ) → R ( y ) chase sequence r 1 → r 2 → r 3 → . . . is not terminating S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Example: Stratification Example r 1 : R ( x ) → ∃ y T ( x , y ) Σ = r 2 : R ( x ) → T ( x , x ) r 3 : T ( x , y ) ∧ T ( x , x ) → R ( y ) chase sequence r 1 → r 2 → r 3 → . . . is not terminating D = { R ( a ) } S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Example: Stratification Example r 1 : R ( x ) → ∃ y T ( x , y ) Σ = r 2 : R ( x ) → T ( x , x ) r 3 : T ( x , y ) ∧ T ( x , x ) → R ( y ) chase sequence r 1 → r 2 → r 3 → . . . is not terminating D = { R ( a ) } r 1 , h 1 D 1 = { R ( a ) , T ( a , η 1 ) } D → S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Example: Stratification Example r 1 : R ( x ) → ∃ y T ( x , y ) Σ = r 2 : R ( x ) → T ( x , x ) r 3 : T ( x , y ) ∧ T ( x , x ) → R ( y ) chase sequence r 1 → r 2 → r 3 → . . . is not terminating D = { R ( a ) } r 1 , h 1 D 1 = { R ( a ) , T ( a , η 1 ) } D → r 2 , h 2 D 2 = { R ( a ) , T ( a , η 1 ) , T ( a , a ) } D 1 → S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Example: Stratification Example r 1 : R ( x ) → ∃ y T ( x , y ) Σ = r 2 : R ( x ) → T ( x , x ) r 3 : T ( x , y ) ∧ T ( x , x ) → R ( y ) chase sequence r 1 → r 2 → r 3 → . . . is not terminating D = { R ( a ) } r 1 , h 1 D 1 = { R ( a ) , T ( a , η 1 ) } D → r 2 , h 2 D 2 = { R ( a ) , T ( a , η 1 ) , T ( a , a ) } D 1 → r 3 , h 3 D 3 = { R ( a ) , T ( a , η 1 ) , T ( a , a ) , R ( η 1 ) } D 2 → S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Example: Stratification Example r 1 : R ( x ) → ∃ y T ( x , y ) Σ = r 2 : R ( x ) → T ( x , x ) r 3 : T ( x , y ) ∧ T ( x , x ) → R ( y ) chase sequence r 1 → r 2 → r 3 → . . . is not terminating D = { R ( a ) } r 1 , h 1 D 1 = { R ( a ) , T ( a , η 1 ) } D → r 2 , h 2 D 2 = { R ( a ) , T ( a , η 1 ) , T ( a , a ) } D 1 → r 3 , h 3 D 3 = { R ( a ) , T ( a , η 1 ) , T ( a , a ) , R ( η 1 ) } D 2 → r 1 , h 4 D 4 = { R ( a ) , T ( a , η 1 ) , T ( a , a ) , R ( η 1 ) , T ( η 1 , η 2 ) } D 3 → . . . S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Example: Stratification Example r 1 : R ( x ) → ∃ y T ( x , y ) Σ = r 2 : R ( x ) → T ( x , x ) r 3 : T ( x , y ) ∧ T ( x , x ) → R ( y ) chase sequence r 1 → r 2 → r 3 → . . . is not terminating D = { R ( a ) } r 1 , h 1 D 1 = { R ( a ) , T ( a , η 1 ) } D → r 2 , h 2 D 2 = { R ( a ) , T ( a , η 1 ) , T ( a , a ) } D 1 → r 3 , h 3 D 3 = { R ( a ) , T ( a , η 1 ) , T ( a , a ) , R ( η 1 ) } D 2 → r 1 , h 4 D 4 = { R ( a ) , T ( a , η 1 ) , T ( a , a ) , R ( η 1 ) , T ( η 1 , η 2 ) } D 3 → . . . chase sequence r 2 → r 3 → r 1 terminates S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria WA -stratification Builds a firing graph Γ(Σ) = (Σ , E ) representing how constraints fire each other. ( r 1 , r 2 ) ∈ E if r 1 < r 2 (firing r 1 can cause r 2 to fire) r 1 < r 2 if: r 1 ≺ r 2 if: r 1 , h 1 K 2 , r 1 , h 1 K 2 , 1) K 1 → 1) K 1 → 2) K 2 ∪ S �| 2) K 2 �| = h 2 ( r 2 ) , = h 2 ( r 2 ) , 3) K 1 ∪ S | = h 2 ( r 2 ) and 3) K 1 | = h 2 ( r 2 ) . 4) Null ( S ) ∩ ( Null ( K 2 ) − Null ( K 1 )) = ∅ . S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria WA -stratification Builds a firing graph Γ(Σ) = (Σ , E ) representing how constraints fire each other. ( r 1 , r 2 ) ∈ E if r 1 < r 2 (firing r 1 can cause r 2 to fire) r 1 < r 2 if: r 1 ≺ r 2 if: r 1 , h 1 K 2 , r 1 , h 1 K 2 , 1) K 1 → 1) K 1 → 2) K 2 ∪ S �| 2) K 2 �| = h 2 ( r 2 ) , = h 2 ( r 2 ) , 3) K 1 ∪ S | = h 2 ( r 2 ) and 3) K 1 | = h 2 ( r 2 ) . 4) Null ( S ) ∩ ( Null ( K 2 ) − Null ( K 1 )) = ∅ . Example r 1 : R ( x ) → ∃ y T ( x , y ) Σ = r 2 : R ( x ) → T ( x , x ) r 3 : T ( x , y ) ∧ T ( x , x ) → R ( y ) K 1 = { R ( a ) } and K 2 = { R ( a ) , T ( a , η 1 ) } S = { T ( a , a ) } r 3 : T ( a , η 1 ) ∧ T ( a , a ) → R ( η 1 ) r 3 is fired by r 1 , then we have r 1 < r 3 S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria WA -stratification (WA-Stratification) We say that Σ is WA-stratified ( W AStr ) iff the constraints in every nontrivial strongly connected component of the firing graph Γ(Σ) = (Σ , { ( r 1 , r 2 ) | r 1 < r 2 } ) are weakly acyclic. S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria WA -stratification (WA-Stratification) We say that Σ is WA-stratified ( W AStr ) iff the constraints in every nontrivial strongly connected component of the firing graph Γ(Σ) = (Σ , { ( r 1 , r 2 ) | r 1 < r 2 } ) are weakly acyclic. Example Σ = { r : T ( x , y ) ∧ T ( y , x ) → ∃ z T ( y , z ) ∧ T ( z , x ) } is WA -stratified, but not c-stratified. S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria WA -stratification (WA-Stratification) We say that Σ is WA-stratified ( W AStr ) iff the constraints in every nontrivial strongly connected component of the firing graph Γ(Σ) = (Σ , { ( r 1 , r 2 ) | r 1 < r 2 } ) are weakly acyclic. Example Σ = { r : T ( x , y ) ∧ T ( y , x ) → ∃ z T ( y , z ) ∧ T ( z , x ) } is WA -stratified, but not c-stratified. Proposition CS tr � WAS tr and SC ∦ WAS tr . S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria SC -stratification and SwA -stratification Definition Given a set of TDGs Σ , we say that Σ is SC-stratified ( SCStr ) if the constraints in every nontrivial strongly connected component of the firing graph Γ(Σ) are safe. SwA-stratified ( SwAStr ) if the constraints in every nontrivial strongly connected component of the firing graph Γ(Σ) are super-weak acyclic. S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria SC -stratification and SwA -stratification Definition Given a set of TDGs Σ , we say that Σ is SC-stratified ( SCStr ) if the constraints in every nontrivial strongly connected component of the firing graph Γ(Σ) are safe. SwA-stratified ( SwAStr ) if the constraints in every nontrivial strongly connected component of the firing graph Γ(Σ) are super-weak acyclic. Proposition Let Σ be a set of WA-stratified (resp. SC-stratified, SwA-stratified) TGDs and let D be a database. Then, the length of every chase sequence of Σ over D is polynomial in the size of D . S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria SwA -stratification Theorem 1 WAS tr � SCS tr � S w AS tr , for C ∈ { W A , SC , SwA } , C � C - S tr and 2 IR ∦ S w AS tr . 3 S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Local Stratification New chase termination condition: Local Stratification (LS) S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Local Stratification New chase termination condition: Local Stratification (LS) Combine < -relation of WA - S tr , with SwA criterion, S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Local Stratification New chase termination condition: Local Stratification (LS) Combine < -relation of WA - S tr , with SwA criterion, ensures the termination of all chase sequences in polynomial data complexity, S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Local Stratification New chase termination condition: Local Stratification (LS) Combine < -relation of WA - S tr , with SwA criterion, ensures the termination of all chase sequences in polynomial data complexity, S w A - S tr � LS and IR � LS . S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Example: Super-weak Acyclicity [Marnette09] Analyzes nulls propagation through constraints Example r 1 : N ( x ) → ∃ y ∃ z E ( x , y ) ∧ S ( z , y ) Σ = r 2 : E ( x 1 , y 1 ) ∧ S ( x 1 , y 1 ) → N ( y 1 ) r 3 : E ( x 2 , y 2 ) → E ( y 2 , x 2 ) S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Example: Super-weak Acyclicity [Marnette09] Analyzes nulls propagation through constraints Example r 1 : N ( x ) → ∃ y ∃ z E ( x , y ) ∧ S ( z , y ) Σ = r 2 : E ( x 1 , y 1 ) ∧ S ( x 1 , y 1 ) → N ( y 1 ) r 3 : E ( x 2 , y 2 ) → E ( y 2 , x 2 ) p 1 ) → ∃ y ∃ z E ( x p 2 , y p 3 ) ∧ S ( z p 4 , y p 5 ) r 1 : N ( x p 6 p 7 p 8 p 9 p 10 Σ = r 2 : E ( x 1 , y 1 ) ∧ S ( x 1 , y 1 ) → N ( y 1 ) p 11 p 12 p 13 p 14 r 3 : E ( x 2 , y 2 ) → E ( y 2 , x 2 ) S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Example: Super-weak Acyclicity [Marnette09] Analyzes nulls propagation through constraints Example p 1 ) → ∃ y ∃ z E ( x p 2 , y p 3 ) ∧ S ( z p 4 , y p 5 ) r 1 : N ( x p 6 p 8 p 9 p 10 p 7 Σ = r 2 : E ( x 1 , y 1 ) ∧ S ( x 1 , y 1 ) → N ( y 1 ) p 11 p 12 p 13 p 14 r 3 : E ( x 2 , y 2 ) → E ( y 2 , x 2 ) Move ( r 1 , y ) = { p 3 , p 5 } S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Example: Super-weak Acyclicity [Marnette09] Analyzes nulls propagation through constraints Example p 1 ) → ∃ y ∃ z E ( x p 2 , y p 3 ) ∧ S ( z p 4 , y p 5 ) r 1 : N ( x p 6 p 7 ) ∧ S ( x p 8 p 9 ) → N ( y 1 p 10 ) Σ = r 2 : E ( x 1 , y 1 1 , y 1 p 11 p 12 p 13 p 14 r 3 : E ( x 2 , y 2 ) → E ( y 2 , x 2 ) Move ( r 1 , y ) = { p 3 , p 5 , p 10 } S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Example: Super-weak Acyclicity [Marnette09] Analyzes nulls propagation through constraints Example p 1 ) → ∃ y ∃ z E ( x p 2 , y p 3 ) ∧ S ( z p 4 , y p 5 ) r 1 : N ( x p 6 p 8 p 9 p 10 p 7 Σ = r 2 : E ( x 1 , y 1 ) ∧ S ( x 1 , y 1 ) → N ( y 1 ) p 11 p 12 ) → E ( y 2 p 13 , x p 14 r 3 : E ( x 2 , y 2 2 ) Move ( r 1 , y ) = { p 3 , p 5 , p 10 , p 13 } S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Example: Super-weak Acyclicity [Marnette09] Analyzes nulls propagation through constraints Example p 1 ) → ∃ y ∃ z E ( x p 2 , y p 3 ) ∧ S ( z p 4 , y p 5 ) r 1 : N ( x p 6 p 8 p 9 p 10 p 7 Σ = r 2 : E ( x 1 , y 1 ) ∧ S ( x 1 , y 1 ) → N ( y 1 ) p 11 p 12 p 13 p 14 r 3 : E ( x 2 , y 2 ) → E ( y 2 , x 2 ) Move ( r 1 , y ) = { p 3 , p 5 , p 10 , p 13 , p 2 } S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Example: Super-weak Acyclicity [Marnette09] Analyzes nulls propagation through constraints Example p 1 ) → ∃ y ∃ z E ( x p 2 , y p 3 ) ∧ S ( z p 4 , y p 5 ) r 1 : N ( x p 6 p 8 p 9 p 10 p 7 Σ = r 2 : E ( x 1 , y 1 ) ∧ S ( x 1 , y 1 ) → N ( y 1 ) p 11 , y p 12 p 13 p 14 ) r 3 : E ( x 2 2 ) → E ( y 2 , x 2 Move ( r 1 , y )) = { p 3 , p 5 , p 10 , p 13 , p 2 , p 14 } S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Example: Super-weak Acyclicity [Marnette09] Analyzes nulls propagation through constraints Example p 1 ) → ∃ y ∃ z E ( x p 2 , y p 3 ) ∧ S ( z p 4 , y p 5 ) r 1 : N ( x p 6 p 7 p 8 p 9 p 10 Σ = r 2 : E ( x 1 , y 1 ) ∧ S ( x 1 , y 1 ) → N ( y 1 ) p 11 p 12 p 13 p 14 r 3 : E ( x 2 , y 2 ) → E ( y 2 , x 2 ) Move ( r 1 , y ) = { p 3 , p 5 , p 10 , p 13 , p 2 , p 14 } S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Example: Super-weak Acyclicity [Marnette09] Analyzes nulls propagation through constraints Example p 1 ) → ∃ y ∃ z E ( x p 2 , y p 3 ) ∧ S ( z p 4 , y p 5 ) r 1 : N ( x p 6 p 7 p 8 p 9 p 10 Σ = r 2 : E ( x 1 , y 1 ) ∧ S ( x 1 , y 1 ) → N ( y 1 ) p 11 p 12 p 13 p 14 r 3 : E ( x 2 , y 2 ) → E ( y 2 , x 2 ) Move ( r 1 , y ) = { p 3 , p 5 , p 10 , p 13 , p 2 , p 14 } Then, we say that r 1 � r 1 because the null introduced by r 1 ( p 3 and p 5 ) is copied again in the head of r 1 ( p 2 ) S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Example: Super-weak Acyclicity [Marnette09] Analyzes nulls propagation through constraints Example p 1 ) → ∃ y ∃ z E ( x p 2 , y p 3 ) ∧ S ( z p 4 , y p 5 ) r 1 : N ( x p 6 p 7 p 8 p 9 p 10 Σ = r 2 : E ( x 1 , y 1 ) ∧ S ( x 1 , y 1 ) → N ( y 1 ) p 11 p 12 p 13 p 14 r 3 : E ( x 2 , y 2 ) → E ( y 2 , x 2 ) Move ( r 1 , y ) = { p 3 , p 5 , p 10 , p 13 , p 2 , p 14 } Then, we say that r 1 � r 1 because the null introduced by r 1 ( p 3 and p 5 ) is copied again in the head of r 1 ( p 2 ) The relation � is cyclic and Σ is not in SwA S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Local Stratification IDEA: testing the firing relation < from WA -stratification in the MOVE construction Example p 1 ) → ∃ y ∃ z E ( x p 3 ) ∧ S ( z p 5 ) p 2 , y p 4 , y r 1 : N ( x p 6 p 7 p 8 p 9 p 10 Σ = r 2 : E ( x 1 , y 1 ) ∧ S ( x 1 , y 1 ) → N ( y 1 ) p 11 p 12 p 13 p 14 r 3 : E ( x 2 , y 2 ) → E ( y 2 , x 2 ) S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Local Stratification IDEA: testing the firing relation < from WA -stratification in the MOVE construction Example p 1 ) → ∃ y ∃ z E ( x p 3 ) ∧ S ( z p 5 ) p 2 , y p 4 , y r 1 : N ( x p 6 p 7 p 8 p 9 p 10 Σ = r 2 : E ( x 1 , y 1 ) ∧ S ( x 1 , y 1 ) → N ( y 1 ) p 11 p 12 p 13 p 14 r 3 : E ( x 2 , y 2 ) → E ( y 2 , x 2 ) S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Local Stratification IDEA: testing the firing relation < from WA -stratification in the MOVE construction Example p 1 ) → ∃ y ∃ z E ( x p 3 ) ∧ S ( z p 5 ) p 2 , y p 4 , y r 1 : N ( x p 6 p 7 p 8 p 9 p 10 Σ = r 2 : E ( x 1 , y 1 ) ∧ S ( x 1 , y 1 ) → N ( y 1 ) p 11 p 12 p 13 p 14 r 3 : E ( x 2 , y 2 ) → E ( y 2 , x 2 ) r 1 ≮ r 2 MOVE ( r 1 , y ) = { p 3 , p 5 } p 10 �∈ MOVE ( r 1 , y ) as r 1 ≮ r 2 S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Local Stratification IDEA: testing the firing relation < from WA -stratification in the MOVE construction Example p 1 ) → ∃ y ∃ z E ( x p 3 ) ∧ S ( z p 5 ) p 2 , y p 4 , y r 1 : N ( x p 6 p 7 p 8 p 9 p 10 Σ = r 2 : E ( x 1 , y 1 ) ∧ S ( x 1 , y 1 ) → N ( y 1 ) p 11 p 12 p 13 p 14 r 3 : E ( x 2 , y 2 ) → E ( y 2 , x 2 ) r 1 ≮ r 2 MOVE ( r 1 , y ) = { p 3 , p 5 } p 10 �∈ MOVE ( r 1 , y ) as r 1 ≮ r 2 S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Local Stratification S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Chase Termination Criteria Limitations Example Σ = ∀ x [ N ( x ) → ∃ y E ( x , y ) ] ∀ ( x , y ) [ S ( x ) ∧ E ( x , y ) → N ( y ) ] S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique Constraints Rewriting Technique S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique Constraints Rewriting Technique [GrecoS10] Idea: rewrite Σ into an ‘equivalent’ set Σ α and verify the structural properties for chase termination on Σ α introduction of adornments associated with predicates ≡ S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique Rewriting Algorithm Example N ( x ) → ∃ y E ( x , y ) Σ = S ( x ) ∧ E ( x , y ) → N ( y ) S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique Rewriting Algorithm Example N ( x ) → ∃ y E ( x , y ) Σ = S ( x ) ∧ E ( x , y ) → N ( y ) In (Σ) = N ( x ) → N b ( x ) S ( x ) → S b ( x ) E ( x , y ) → E bb ( x , y ) S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique Rewriting Algorithm Example N ( x ) → ∃ y E ( x , y ) Σ = S ( x ) ∧ E ( x , y ) → N ( y ) Base (Σ) = N b ( x ) → ∃ y E bf ( x , y ) In (Σ) = S b ( x ) ∧ E bb ( x , y ) → N b ( y ) N ( x ) → N b ( x ) S ( x ) → S b ( x ) E ( x , y ) → E bb ( x , y ) S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique Rewriting Algorithm Example N ( x ) → ∃ y E ( x , y ) Σ = S ( x ) ∧ E ( x , y ) → N ( y ) Base (Σ) = N b ( x ) → ∃ y E bf ( x , y ) In (Σ) = S b ( x ) ∧ E bb ( x , y ) → N b ( y ) N ( x ) → N b ( x ) S ( x ) → S b ( x ) Derived (Σ) = E ( x , y ) → E bb ( x , y ) S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique Rewriting Algorithm Example N ( x ) → ∃ y E ( x , y ) Σ = S ( x ) ∧ E ( x , y ) → N ( y ) Base (Σ) = N b ( x ) → ∃ y E bf ( x , y ) In (Σ) = S b ( x ) ∧ E bb ( x , y ) → N b ( y ) N ( x ) → N b ( x ) S ( x ) → S b ( x ) Derived (Σ) = E ( x , y ) → E bb ( x , y ) S b ( x ) ∧ E bf ( x , y ) → N f ( y ) S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique Rewriting Algorithm Example N ( x ) → ∃ y E ( x , y ) Σ = S ( x ) ∧ E ( x , y ) → N ( y ) Base (Σ) = N b ( x ) → ∃ y E bf ( x , y ) In (Σ) = S b ( x ) ∧ E bb ( x , y ) → N b ( y ) N ( x ) → N b ( x ) S ( x ) → S b ( x ) Derived (Σ) = E ( x , y ) → E bb ( x , y ) S b ( x ) ∧ E bf ( x , y ) → N f ( y ) S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique Rewriting Algorithm Example N ( x ) → ∃ y E ( x , y ) Σ = S ( x ) ∧ E ( x , y ) → N ( y ) Base (Σ) = N b ( x ) → ∃ y E bf ( x , y ) In (Σ) = S b ( x ) ∧ E bb ( x , y ) → N b ( y ) N ( x ) → N b ( x ) S ( x ) → S b ( x ) Derived (Σ) = E ( x , y ) → E bb ( x , y ) S b ( x ) ∧ E bf ( x , y ) → N f ( y ) N f ( x ) → ∃ y E ff ( x , y ) S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique Rewriting Algorithm Example N ( x ) → ∃ y E ( x , y ) Σ = S ( x ) ∧ E ( x , y ) → N ( y ) In (Σ) = Base (Σ) = N ( x ) → N b ( x ) N b ( x ) → ∃ y E bf ( x , y ) S ( x ) → S b ( x ) S b ( x ) ∧ E bb ( x , y ) → N b ( y ) E ( x , y ) → E bb ( x , y ) Derived (Σ) = Out (Σ) = N b ( x ) → ˆ S b ( x ) ∧ E bf ( x , y ) → N f ( y ) N ( x ) N f ( x ) → ˆ N f ( x ) → ∃ y E ff ( x , y ) N ( x ) S b ( x ) → ˆ S ( x ) E bb ( x , y ) → ˆ E ( x , y ) E bf ( x , y ) → ˆ E ( x , y ) E ff ( x , y ) → ˆ E ( x , y ) S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique Rewriting Algorithm Example D = { N ( a ) , S ( a ) } chase ( D , Adn (Σ)) = { chase ( D , Map (Σ)) = { N ( a ) S ( a ) N ( a ) S ( a ) E ( a , η 1 ) N ( η 1 ) E ( η 1 , η 2 ) N b ( a ) S b ( a ) E bf ( a , η 1 ) N f ( η 1 ) E ff ( η 1 , η 2 ) N ( a ) ˆ ˆ S ( a ) ˆ E ( a , η 1 ) ˆ ˆ N ( a ) ˆ ˆ S ( a ) ˆ N ( η 1 ) E ( η 1 , η 2 ) E ( a , η 1 ) ˆ ˆ } N ( η 1 ) E ( η 1 , η 2 ) } S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique Chase Termination Checking Test chase termination criteria over rewritten constraints Adn (Σ) Adn (Σ) = { Figure: Dep (Σ) . . . N b ( x ) → ∃ y E bf ( x , y ) S b ( x ) ∧ E bb ( x , y ) → N b ( y ) S b ( x ) ∧ E bf ( x , y ) → N f ( y ) N f ( x ) → ∃ y E ff ( x , y ) . . . } Figure: Dep ( Adn (Σ)) S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique Chase Termination Checking Adn - T : class of sets of TGDs Σ s.t. Adn (Σ) is in T Theorem T � Adn −T for T ∈{WA , SC , CS tr , IR , S w A , WAS tr , . . . , LS} . Rewriting technique is orthogonal to termination conditions improves current chase termination criteria S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique Constraints Rewriting Technique Figure: Criteria Relationships S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique Improving Rewriting Algorithm Adn ++ S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique A New Rewriting Algorithm Example r 1 : R ( x ) → S ( x , x ) r 2 : S ( x 1 , x 2 ) → ∃ z T ( x 2 , z ) ∧ Q ( x 2 ) Σ = r 3 : T ( x 1 , x 2 ) ∧ T ( x 1 , x 3 ) ∧ T ( x 3 , x 1 ) → R ( x 2 ) Adn (Σ) �∈ LS · · · R f ( x ) → S ff ( x , x ) Adn (Σ) = S ff ( x 1 , x 2 ) → ∃ z T ff ( x 2 , z ) ∧ Q f ( x 2 ) T ff ( x 1 , x 2 ) ∧ T ff ( x 1 , x 3 ) ∧ T ff ( x 3 , x 1 ) → R f ( x 2 ) chase ( D , Σ) terminates for all database D S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique A New Rewriting Algorithm Adn ++ algorithm improves Adn S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique A New Rewriting Algorithm Adn ++ algorithm improves Adn testing of the < -relation during the generation of adorned constraints, S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique A New Rewriting Algorithm Adn ++ algorithm improves Adn testing of the < -relation during the generation of adorned constraints, the adornment f i is assigned in a more refined way (skolem function), S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique A New Rewriting Algorithm Adn ++ algorithm improves Adn testing of the < -relation during the generation of adorned constraints, the adornment f i is assigned in a more refined way (skolem function), cyclicity detection ( Adn ++ returns a boolean value, cyc , saying if there is cyclicity among the adorned constraints). S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique A New Rewriting Algorithm Example r 1 : N ( x ) → ∃ y E ( x , y ) Σ = r 2 : E ( x , y ) → N ( y ) r 1 < r 2 r 2 < r 1 S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique A New Rewriting Algorithm Example r 1 : N ( x ) → ∃ y E ( x , y ) Σ = r 2 : E ( x , y ) → N ( y ) r 1 < r 2 r 2 < r 1 cyc = false S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique A New Rewriting Algorithm Example Base (Σ) = r 1 : N ( x ) → ∃ y E ( x , y ) r i 1 : N b ( x ) → ∃ y E bf 1 ( x , y ) Σ = r 2 : E ( x , y ) → N ( y ) r i 2 : E bb ( x , y ) → N b ( y ) r 1 < r 2 r 2 < r 1 cyc = false S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique A New Rewriting Algorithm Example Base (Σ) = r 1 : N ( x ) → ∃ y E ( x , y ) r i 1 : N b ( x ) → ∃ y E bf 1 ( x , y ) Σ = r 2 : E ( x , y ) → N ( y ) r i 2 : E bb ( x , y ) → N b ( y ) Derived (Σ) = r 1 < r 2 r 2 < r 1 cyc = false S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique A New Rewriting Algorithm Example Base (Σ) = r 1 : N ( x ) → ∃ y E ( x , y ) r i 1 : N b ( x ) → ∃ y E bf 1 ( x , y ) Σ = r 2 : E ( x , y ) → N ( y ) r i 2 : E bb ( x , y ) → N b ( y ) Derived (Σ) = r 1 < r 2 r 2 < r 1 cyc = false S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique A New Rewriting Algorithm Example Base (Σ) = r 1 : N ( x ) → ∃ y E ( x , y ) r i 1 : N b ( x ) → ∃ y E bf 1 ( x , y ) Σ = r 2 : E ( x , y ) → N ( y ) r i 2 : E bb ( x , y ) → N b ( y ) Derived (Σ) = r 1 < r 2 r 2 < r 1 cyc = false S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique A New Rewriting Algorithm Example Base (Σ) = r 1 : N ( x ) → ∃ y E ( x , y ) r i 1 : N b ( x ) → ∃ y E bf 1 ( x , y ) Σ = r 2 : E ( x , y ) → N ( y ) r i 2 : E bb ( x , y ) → N b ( y ) Derived (Σ) = r 1 < r 2 r ii 2 : E bf 1 ( x , y ) → N f 1 ( y ) r 2 < r 1 cyc = false S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique A New Rewriting Algorithm Example Base (Σ) = r 1 : N ( x ) → ∃ y E ( x , y ) r i 1 : N b ( x ) → ∃ y E bf 1 ( x , y ) Σ = r 2 : E ( x , y ) → N ( y ) r i 2 : E bb ( x , y ) → N b ( y ) Derived (Σ) = r 1 < r 2 r ii 2 : E bf 1 ( x , y ) → N f 1 ( y ) r 2 < r 1 cyc = false S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique A New Rewriting Algorithm Example Base (Σ) = r 1 : N ( x ) → ∃ y E ( x , y ) r i 1 : N b ( x ) → ∃ y E bf 1 ( x , y ) Σ = r 2 : E ( x , y ) → N ( y ) r i 2 : E bb ( x , y ) → N b ( y ) Derived (Σ) = r 1 < r 2 r ii 2 : E bf 1 ( x , y ) → N f 1 ( y ) r 2 < r 1 cyc = false S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique A New Rewriting Algorithm Example Base (Σ) = r 1 : N ( x ) → ∃ y E ( x , y ) r i 1 : N b ( x ) → ∃ y E bf 1 ( x , y ) Σ = r 2 : E ( x , y ) → N ( y ) r i 2 : E bb ( x , y ) → N b ( y ) Derived (Σ) = r 1 < r 2 r ii 2 : E bf 1 ( x , y ) → N f 1 ( y ) r 2 < r 1 r ii 1 : N f 1 ( x ) → ∃ y E f 1 f 2 ( x , y ) cyc = false S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique A New Rewriting Algorithm Example Base (Σ) = r 1 : N ( x ) → ∃ y E ( x , y ) r i 1 : N b ( x ) → ∃ y E bf 1 ( x , y ) Σ = r 2 : E ( x , y ) → N ( y ) r i 2 : E bb ( x , y ) → N b ( y ) Derived (Σ) = r 1 < r 2 r ii 2 : E bf 1 ( x , y ) → N f 1 ( y ) r 2 < r 1 r ii 1 : N f 1 ( x ) → ∃ y E f 1 f 2 ( x , y ) cyc = false S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique A New Rewriting Algorithm Example Base (Σ) = r 1 : N ( x ) → ∃ y E ( x , y ) r i 1 : N b ( x ) → ∃ y E bf 1 ( x , y ) Σ = r 2 : E ( x , y ) → N ( y ) r i 2 : E bb ( x , y ) → N b ( y ) Derived (Σ) = r 1 < r 2 r ii 2 : E bf 1 ( x , y ) → N f 1 ( y ) r 2 < r 1 r ii 1 : N f 1 ( x ) → ∃ y E f 1 f 2 ( x , y ) cyc = false S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique A New Rewriting Algorithm Example Base (Σ) = r 1 : N ( x ) → ∃ y E ( x , y ) r i 1 : N b ( x ) → ∃ y E bf 1 ( x , y ) Σ = r 2 : E ( x , y ) → N ( y ) r i 2 : E bb ( x , y ) → N b ( y ) Derived (Σ) = r 1 < r 2 r ii 2 : E bf 1 ( x , y ) → N f 1 ( y ) r 2 < r 1 r ii 1 : N f 1 ( x ) → ∃ y E f 1 f 2 ( x , y ) cyc = false r iii 2 : E f 1 f 2 ( x , y ) → N f 2 ( y ) S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique A New Rewriting Algorithm Example Base (Σ) = r i 1 : N b ( x ) → ∃ y E bf 1 ( x , y ) r 1 : N ( x ) → ∃ y E ( x , y ) Σ = r 2 : E ( x , y ) → N ( y ) r i 2 : E bb ( x , y ) → N b ( y ) Derived (Σ) = r 1 < r 2 r ii 2 : E bf 1 ( x , y ) → N f 1 ( y ) r 2 < r 1 r ii 1 : N f 1 ( x ) → ∃ y E f 1 f 2 ( x , y ) cyc = false r iii 2 : E f 1 f 2 ( x , y ) → N f 2 ( y ) S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Stratification Criteria and Rewriting Techniques for Checking Chase Termination Constraints Rewriting Technique A New Rewriting Algorithm Example Base (Σ) = r i 1 : N b ( x ) → ∃ y E bf 1 ( x , y ) r 1 : N ( x ) → ∃ y E ( x , y ) Σ = r 2 : E ( x , y ) → N ( y ) r i 2 : E bb ( x , y ) → N b ( y ) Derived (Σ) = r 1 < r 2 r ii 2 : E bf 1 ( x , y ) → N f 1 ( y ) r 2 < r 1 r ii 1 : N f 1 ( x ) → ∃ y E f 1 f 2 ( x , y ) cyc = false r iii 2 : E f 1 f 2 ( x , y ) → N f 2 ( y ) r iii 1 : N f 2 ( x ) → ∃ y E f 2 f 3 ( x , y ) S. Greco, F. Spezzano and I. Trubitsyna Stratification Criteria and Rewriting Techniques for Checking
Recommend
More recommend