Storing thermal energy underground - UTES - Dr. Signhild Gehlin Swedish Geoenergy Center ISES Webinar ” Geothermal Underground Storage for Solar Applications ” August 30th, 2018
Shallow and deep geothermal Surface water Rock Groundwater Soils Borehole TES Aquifer TES Caverns & Pits Energy piles Deep geothermal Illustrations: Signhild Gehlin 2014
Shallow and deep geothermal Surface water Rock Groundwater Soils Smaller applications, often single mode. Passively Borehole TES Aquifer TES stored solar heat. Caverns & Pits Energy piles Deep geothermal Illustrations: Signhild Gehlin 2014
Shallow and deep geothermal Surface water Rock Groundwater Soils Larger applications for heating and cooling or high temperature BTES. Active storage of solar or waste heat/cold. Borehole TES Aquifer TES Caverns & Pits Energy piles Deep geothermal Illustrations: Signhild Gehlin 2014
Shallow and deep geothermal Surface water Rock Groundwater Soils Borehole TES Aquifer TES Large (district) applications for heat (often at high temperature) or cold storage. Caverns & Pits Energy piles Deep geothermal Illustrations: Signhild Gehlin 2014
Shallow and deep geothermal Surface water Rock Groundwater Soils Borehole TES Aquifer TES Caverns & Pits Energy piles Use of foundation for part load Deep geothermal heating and cooling. Illustrations: Signhild Gehlin 2014
Shallow and deep geothermal Surface water Rock Groundwater Soils Deep heat resources for large scale (district) heating or power production. No cooling, solar or storage. Borehole TES Aquifer TES Caverns & Pits Energy piles Deep geothermal Illustrations: Signhild Gehlin 2014
Geothermal energy use Worldwide 2015 Cooling not included! ENERGY TOTAL 237 TWh INSTALLED CAPACITY TOTAL 74 GW Direct Deep Direct geothermal Heat Pumps Deep 30% 70% Geothermal Heat pumps Geothermal 10% 40% Power 30% Geothermal Power 20% Source: WGC 2015 (Lund and Boyd)
Geothermal energy use Worldwide 2015 Cooling not included! GEOTHERMAL HEAT TOTAL 163 TWh The rest Direct of the Deep China world 30% 13% geothermal 30% Heat pumps Geothermal Europe 40% Power 30% except Sweden USA 35% 13% Sweden 9% Source: WGC 2015 (Lund and Boyd)
Top three world geothermal energy countries Total: 20.8 GW, 37.5 TWh Heat: 0.6 GW, 2.5 TWh GSHP: 16.8 GW, 18.5 TWh Power: 3.4 GW, 16.6 TWh Total: 19.3 GW, 48.65 TWh Total: 5.6 GW, 14.4 TWh Heat: 7.5 GW, 20.6 TWh Heat: 0.048 GW, 0.2 TWh GSHP: 11.8 GW, 27, 9 TWh GSHP: 5.6 GW, 14.2 TWh Power: 0.027 GW, 0.15 TWh Power: 0 GW, 0 TWh Source: WGC 2015 (Lund and Boyd)
Potential for underground thermal energy storage 30 30 Bogota 25 Ottawa 25 20 20 15 15 10 10 5 5 0 0 Jan Feb Mar Apr Maj Jun Jul Aug Sep Okt Nov Dec Jan Feb Mar Apr Maj Jun Jul Aug Sep Okt Nov Dec -5 -5 -10 -10 -15 -15 Bogota- TL Bogota - TH Ottawa - TL Ottawa - TH -20 -20 Source: worldweather.org and climatedata.eu
1970’s 1980’s 2000’s 1990’s 2010’s
ATES & BTES experi- ments in ATES in USA, CH, USA, CH, NL, SE, NL FR, JP 1970’s 1980’s 2000’s 1990’s 2010’s Oil Crisis Solar
CTES Lyckebo Avesta Kerava ATES Hokkaido Tuscaloosa Frösundavik ATES & BTES BTES experi- Sunstore & Sunclay ments in Neuchatel USA, CH, Lulevärme NL, SE, Cormontreuil FR, JP Groeningen 1970’s 1980’s 2000’s 1990’s 2010’s Oil HT- Crisis UTES Solar
CTES Lyckebo Avesta HT ATES: Kerava Utrecht ATES ATES+BTES Hokkaido Tuscaloosa Stockton Frösundavik ATES & BTES Road: BTES experi- Därlingen Sunstore & Sunclay ments in Neuchatel USA, CH, Lulevärme NL, SE, Solar: Cormontreuil FR, JP Neckarsulm Groeningen 1970’s 1980’s 2000’s 1990’s 2010’s Oil HT- H/C Crisis UTES UTES Solar
CTES Lyckebo ATES: Avesta Arlanda HT ATES: Kerava Utrecht LT + Hybrids: Näsbypark ATES ATES+BTES Oshawa Hokkaido Zhungguancon Tuscaloosa Stockton Frösundavik Akershus ATES & BTES Road: BTES experi- Solar: Därlingen Sunstore & Sunclay ments in Anneberg Neuchatel USA, CH, Attenkirchen Lulevärme NL, SE, Solar: Crailsheim Cormontreuil FR, JP Neckarsulm DLSC Groeningen 1970’s 1980’s 2000’s 1990’s 2010’s Oil HT- H/C Hybrid- Crisis UTES UTES UTES Solar
Large CTES BTES: Lyckebo Epic ATES: Tijanjin Avesta Arlanda HT ATES: BSU Kerava Utrecht ELI-NP LT + Hybrids: Sibbo Näsbypark ATES ATES+BTES Oshawa Hokkaido Grids: Zhungguancon Tuscaloosa Stockton NUS Frösundavik Akershus Whisper V ATES & Rotkreutz BTES Road: Hönggerberg BTES experi- Solar: Därlingen Sunstore & Sunclay ments in Anneberg HT: Neuchatel USA, CH, Attenkirchen Xylem Lulevärme NL, SE, Solar: Crailsheim Braedstrup Cormontreuil FR, JP Neckarsulm DLSC Linköping Groeningen 1970’s 1980’s 2000’s 1990’s 2010’s Oil Large HT- H/C Hybrid- Crisis BTES UTES UTES UTES Solar HT+DH
Underground storage strategies • Passive systems • Active systems • Active systems - balanced
Energy demand ENERGY COOLING HEATING DEMAND RESOURCE RESOURCE Illustration: Signhild Gehlin 2015
UTES is both heat source and cold source POWER P ENERGY LOCAL LOCAL O HEAT SOURCE COLD SOURCE W DEMAND E R Illustration: Signhild Gehlin 2015
The underground offers a range of cost effective possibilities to store solar, waste or other heat or cold over seasons in a non- intrusive and sustainable way. Both for smaller and larger scale. UTES is invisible, quiet and non-smelling.
The underground offers a range of cost effective possibilities to store solar, waste or other heat or cold over seasons in a non- intrusive and sustainable way. Both for smaller and larger scale. UTES is invisible, quiet and non-smelling. (If it weren’t , maybe we would have had more of it?) Thank you!
Recommend
More recommend