stochastic approximation based methods for computing the
play

Stochastic approximation based methods for computing the optimal - PowerPoint PPT Presentation

Stochastic approximation based methods for computing the optimal thresholds in remote-state estimation with packet drops Jhelum Chakravorty Joint work with Jayakumar Subramanian and Aditya Mahajan McGill University American Control Conference


  1. Stochastic approximation based methods for computing the optimal thresholds in remote-state estimation with packet drops Jhelum Chakravorty Joint work with Jayakumar Subramanian and Aditya Mahajan McGill University American Control Conference May 24, 2017 1 / 18

  2. Motivation Sequential transmission of data Zero delay in reconstruction 2 / 18

  3. Motivation Applications? Smart grids 2 / 18

  4. Motivation Applications? Environmental monitoring, sensor network 2 / 18

  5. Motivation Applications? Internet of things 2 / 18

  6. Motivation Applications? Smart grids Environmental monitoring, sensor network Internet of things Salient features Sensing is cheap Transmission is expensive Size of data-packet is not critical 2 / 18

  7. Motivation We study a stylized model. Characterization of the fundamental trade-off between estimation accuracy and transmission cost! 2 / 18

  8. The remote-state estimation setup U t = f t ( X 0: t , Y 0: t − 1 ), ∈ { 0 , 1 } S t ∈ { ON(1- ε ), OFF( ε ) } ˆ X t Y t X t U t Markov process Transmitter Erasure channel Receiver ˆ X t +1 = aX t + W t ACK/NACK X t = g t ( Y 0: t ) Source model X t + 1 = aX t + W t , W t i.i.d. 3 / 18

  9. The remote-state estimation setup U t = f t ( X 0: t , Y 0: t − 1 ), ∈ { 0 , 1 } S t ∈ { ON(1- ε ), OFF( ε ) } ˆ X t Y t X t U t Markov process Transmitter Erasure channel Receiver ˆ X t +1 = aX t + W t ACK/NACK X t = g t ( Y 0: t ) Source model X t + 1 = aX t + W t , W t i.i.d. a , X t , W t ∈ R , pdf of W t : φ ( · ) - Gaussian . 3 / 18

  10. The remote-state estimation setup U t = f t ( X 0: t , Y 0: t − 1 ), ∈ { 0 , 1 } S t ∈ { ON(1- ε ), OFF( ε ) } ˆ X t Y t X t U t Markov process Transmitter Erasure channel Receiver ˆ X t +1 = aX t + W t ACK/NACK X t = g t ( Y 0: t ) Source model X t + 1 = aX t + W t , W t i.i.d. Channel model S t i.i.d.; S t = 1: channel ON, S t = 0: channel OFF Packet drop with probability ε . 3 / 18

  11. The remote-state estimation setup � if U t S t = 1 X t , Transmitter U t = f t ( X 0 : t , Y 0 : t − 1 ) and Y t = if U t S t = 0 . E , Receiver ˆ X t = g t ( Y 0 : t ) Per-step distortion: d ( X t − ˆ X t ) = ( X t − ˆ X t ) 2 . Communication Transmission strategy f = { f t } ∞ t = 0 strategies Estimation strategy g = { g t } ∞ t = 0 3 / 18

  12. The optimization problem Discounted setup: β ∈ ( 0 , 1 ) D β ( f , g ) := ( 1 − β ) E ( f , g ) � ∞ � � � β t d ( X t − ˆ � X 0 = 0 X t ) � t = 0 N β ( f , g ) := ( 1 − β ) E ( f , g ) � ∞ � � � β t U t � X 0 = 0 � t = 0 Long-term average setup: β = 1 T E ( f , g ) � T − 1 1 � � � d ( X t − ˆ D 1 ( f , g ) := lim sup � X 0 = 0 X t ) � T →∞ t = 0 T E ( f , g ) � T − 1 1 � � � N 1 ( f , g ) := lim sup � X 0 = 0 U t � T →∞ t = 0 4 / 18

  13. The optimization problem Constrained performance: The Distortion-Transmission function D ∗ β ( α ) := D β ( f ∗ , g ∗ ) := ( f , g ): N β ( f , g ) ≤ α D β ( f , g ) , β ∈ ( 0 , 1 ] inf Minimize expected distortion such that expected number of transmissions is less than α 4 / 18

  14. The optimization problem Constrained performance: The Distortion-Transmission function D ∗ β ( α ) := D β ( f ∗ , g ∗ ) := ( f , g ): N β ( f , g ) ≤ α D β ( f , g ) , β ∈ ( 0 , 1 ] inf Minimize expected distortion such that expected number of transmissions is less than α Costly performance: Lagrange relaxation C ∗ β ( λ ) := inf ( f , g ) D β ( f , g ) + λ N β ( f , g ) , β ∈ ( 0 , 1 ] 4 / 18

  15. Decentralized control systems Team: Multiple decision makers to achieve a common goal 5 / 18

  16. Decentralized control systems Pioneers: Theory of teams Economics: Marschak, 1955; Radner, 1962 Systems and control: Witsenhausen, 1971; Ho, Chu, 1972 5 / 18

  17. Decentralized control systems Pioneers: Theory of teams Economics: Marschak, 1955; Radner, 1962 Systems and control: Witsenhausen, 1971; Ho, Chu, 1972 Remote-state estimation as Team problem No packet drop - Marshak, 1954; Kushner, 1964; Åstrom, Bernhardsson, 2002; Xu and Hespanha, 2004; Imer and Basar, 2005; Lipsa and Martins, 2011; Molin and Hirche, 2012; Nayyar, Başar, Teneketzis and Veeravalli, 2013; D. Shi, L. Shi and Chen, 2015 With packet drop - Ren, Wu, Johansson, G. Shi and L. Shi, 2016; Chen, Wang, D. Shi and L. Shi, 2017; With noise - Gao, Akyol and Başar, 2015–2017 5 / 18

  18. Remote-state estimation - Steps towards optimal solution Establish the structure of optimal strategies (transmission and estimation) Computation of optimal strategies and performances 6 / 18

  19. Step 1 - Structure of optimal strategies: Lipsa-Martins 2011 & Molin-Hirsche 2012 - no packet drop Optimal estimator Time homogeneous! � if Y t � = E ; Y t , ˆ X t = g ∗ t ( Y t ) = g ∗ ( Y t ) = a ˆ if Y t = E . X t − 1 , 7 / 18

  20. Step 1 - Structure of optimal strategies: Lipsa-Martins 2011 & Molin-Hirsche 2012 - no packet drop Optimal estimator Time homogeneous! � if Y t � = E ; Y t , ˆ X t = g ∗ t ( Y t ) = g ∗ ( Y t ) = a ˆ if Y t = E . X t − 1 , Optimal transmitter X t ∈ R ; U t is threshold based action: � if | X t − a ˆ 1 , X t | ≥ k U t = f ∗ t ( X t , U 0 : t − 1 ) = f ∗ ( X t ) = if | X t − a ˆ 0 , X t | < k 7 / 18

  21. Step 1 - Structure of optimal strategies: Lipsa-Martins 2011 & Molin-Hirsche 2012 - no packet drop Optimal estimator Time homogeneous! � if Y t � = E ; Y t , ˆ X t = g ∗ t ( Y t ) = g ∗ ( Y t ) = a ˆ if Y t = E . X t − 1 , Optimal transmitter X t ∈ R ; U t is threshold based action: � if | X t − a ˆ 1 , X t | ≥ k U t = f ∗ t ( X t , U 0 : t − 1 ) = f ∗ ( X t ) = if | X t − a ˆ 0 , X t | < k Similar structural results for channel with packet drops. 7 / 18

  22. Step 2 - The error process E t τ ( k ) : the time a packet was last received successfully. E t := X t − a t − τ ( k ) X τ ( k ) , E t := ˆ ˆ X t − a t − τ ( k ) X τ ( k ) ; 8 / 18

  23. Step 2 - The error process E t τ ( k ) : the time a packet was last received successfully. E t := X t − a t − τ ( k ) X τ ( k ) , E t := ˆ ˆ X t − a t − τ ( k ) X τ ( k ) ; d ( X t − ˆ X t ) = d ( E t − ˆ E t ) . 8 / 18

  24. Step 2 - The error process E t τ ( k ) : the time a packet was last received successfully. E t := X t − a t − τ ( k ) X τ ( k ) , E t := ˆ ˆ X t − a t − τ ( k ) X τ ( k ) ; = X t − a ( ˆ X t − 1 − ˆ E t − 1 ) � if Y t = E aE t − 1 + W t − 1 , = if Y t � = E W t , 8 / 18

  25. Performance evaluation - JC-AM TAC ’17, NecSys ’16 � 1 , if | e | ≥ k f ( k ) ( e ) = 0 , if | e | < k Till first successful reception � τ ( k ) − 1 � L ( k ) � � β ( 0 ) := E β t d ( E t ) � E 0 = 0 � t = 0 � τ ( k ) − 1 β t � � M ( k ) � β ( 0 ) := E � E 0 = 0 � t = 0 � τ ( k ) � � K ( k ) � β t U t β ( 0 ) := E � E 0 = 0 � t = 0 9 / 18

  26. Performance evaluation - JC-AM TAC ’17, NecSys ’16 � 1 , if | e | ≥ k f ( k ) ( e ) = E t is regenerative process 0 , if | e | < k Renewal relationships L ( k ) β ( 0 ) D ( k ) β ( 0 ) := D β ( f ( k ) , g ∗ ) = M ( k ) β ( 0 ) K ( k ) β ( 0 ) N ( k ) β ( 0 ) := N β ( f ( k ) , g ∗ ) = M ( k ) β ( 0 ) 9 / 18

  27. Computation of D , N �  � � φ ( n − ae ) L ( k ) if | e | ≥ k d ( e ) + β β ( n ) dn ε ,    L ( k ) n ∈ R β ( e ) = � φ ( n − ae ) L ( k ) if | e | < k , d ( e ) + β β ( n ) dn ,    n ∈ R 10 / 18

  28. Computation of D , N �  � � φ ( n − ae ) L ( k ) if | e | ≥ k d ( e ) + β β ( n ) dn ε ,    L ( k ) n ∈ R β ( e ) = � φ ( n − ae ) L ( k ) if | e | < k , d ( e ) + β β ( n ) dn ,    n ∈ R M ( k ) β ( e ) and K ( k ) β ( e ) defined in a similar way. 10 / 18

  29. Computation of D , N �  � � φ ( n − ae ) L ( k ) if | e | ≥ k d ( e ) + β β ( n ) dn ε ,    L ( k ) n ∈ R β ( e ) = � φ ( n − ae ) L ( k ) if | e | < k , d ( e ) + β β ( n ) dn ,    n ∈ R ε = 0: Fredholm integral equations of second kind - bisection method to compute optimal threshold ε � = 0: Fredholm-like equation; discontinuous kernel, infinite limit - analytical methods difficult 10 / 18

  30. Optimality condition (JC & AM: TAC’17, NecSys ’16) D ( k ) β , N ( k ) β , C ( k ) - differentiable in k β Theorem - costly communication If ( k , λ ) satisfies ∂ k D ( k ) + λ∂ k N ( k ) = 0, then, ( f ( k ) , g ∗ ) optimal β β for costly comm. with cost λ . 11 / 18

  31. Optimality condition (JC & AM: TAC’17, NecSys ’16) D ( k ) β , N ( k ) β , C ( k ) - differentiable in k β Theorem - costly communication If ( k , λ ) satisfies ∂ k D ( k ) + λ∂ k N ( k ) = 0, then, ( f ( k ) , g ∗ ) optimal β β for costly comm. with cost λ . β ( λ ) := C β ( f ( k ) , g ∗ ; λ ) is continuous, increasing and concave in λ . C ∗ 11 / 18

Recommend


More recommend