Stochastic approximation based methods for computing the optimal thresholds in remote-state estimation with packet drops Jhelum Chakravorty Joint work with Jayakumar Subramanian and Aditya Mahajan McGill University American Control Conference May 24, 2017 1 / 18
Motivation Sequential transmission of data Zero delay in reconstruction 2 / 18
Motivation Applications? Smart grids 2 / 18
Motivation Applications? Environmental monitoring, sensor network 2 / 18
Motivation Applications? Internet of things 2 / 18
Motivation Applications? Smart grids Environmental monitoring, sensor network Internet of things Salient features Sensing is cheap Transmission is expensive Size of data-packet is not critical 2 / 18
Motivation We study a stylized model. Characterization of the fundamental trade-off between estimation accuracy and transmission cost! 2 / 18
The remote-state estimation setup U t = f t ( X 0: t , Y 0: t − 1 ), ∈ { 0 , 1 } S t ∈ { ON(1- ε ), OFF( ε ) } ˆ X t Y t X t U t Markov process Transmitter Erasure channel Receiver ˆ X t +1 = aX t + W t ACK/NACK X t = g t ( Y 0: t ) Source model X t + 1 = aX t + W t , W t i.i.d. 3 / 18
The remote-state estimation setup U t = f t ( X 0: t , Y 0: t − 1 ), ∈ { 0 , 1 } S t ∈ { ON(1- ε ), OFF( ε ) } ˆ X t Y t X t U t Markov process Transmitter Erasure channel Receiver ˆ X t +1 = aX t + W t ACK/NACK X t = g t ( Y 0: t ) Source model X t + 1 = aX t + W t , W t i.i.d. a , X t , W t ∈ R , pdf of W t : φ ( · ) - Gaussian . 3 / 18
The remote-state estimation setup U t = f t ( X 0: t , Y 0: t − 1 ), ∈ { 0 , 1 } S t ∈ { ON(1- ε ), OFF( ε ) } ˆ X t Y t X t U t Markov process Transmitter Erasure channel Receiver ˆ X t +1 = aX t + W t ACK/NACK X t = g t ( Y 0: t ) Source model X t + 1 = aX t + W t , W t i.i.d. Channel model S t i.i.d.; S t = 1: channel ON, S t = 0: channel OFF Packet drop with probability ε . 3 / 18
The remote-state estimation setup � if U t S t = 1 X t , Transmitter U t = f t ( X 0 : t , Y 0 : t − 1 ) and Y t = if U t S t = 0 . E , Receiver ˆ X t = g t ( Y 0 : t ) Per-step distortion: d ( X t − ˆ X t ) = ( X t − ˆ X t ) 2 . Communication Transmission strategy f = { f t } ∞ t = 0 strategies Estimation strategy g = { g t } ∞ t = 0 3 / 18
The optimization problem Discounted setup: β ∈ ( 0 , 1 ) D β ( f , g ) := ( 1 − β ) E ( f , g ) � ∞ � � � β t d ( X t − ˆ � X 0 = 0 X t ) � t = 0 N β ( f , g ) := ( 1 − β ) E ( f , g ) � ∞ � � � β t U t � X 0 = 0 � t = 0 Long-term average setup: β = 1 T E ( f , g ) � T − 1 1 � � � d ( X t − ˆ D 1 ( f , g ) := lim sup � X 0 = 0 X t ) � T →∞ t = 0 T E ( f , g ) � T − 1 1 � � � N 1 ( f , g ) := lim sup � X 0 = 0 U t � T →∞ t = 0 4 / 18
The optimization problem Constrained performance: The Distortion-Transmission function D ∗ β ( α ) := D β ( f ∗ , g ∗ ) := ( f , g ): N β ( f , g ) ≤ α D β ( f , g ) , β ∈ ( 0 , 1 ] inf Minimize expected distortion such that expected number of transmissions is less than α 4 / 18
The optimization problem Constrained performance: The Distortion-Transmission function D ∗ β ( α ) := D β ( f ∗ , g ∗ ) := ( f , g ): N β ( f , g ) ≤ α D β ( f , g ) , β ∈ ( 0 , 1 ] inf Minimize expected distortion such that expected number of transmissions is less than α Costly performance: Lagrange relaxation C ∗ β ( λ ) := inf ( f , g ) D β ( f , g ) + λ N β ( f , g ) , β ∈ ( 0 , 1 ] 4 / 18
Decentralized control systems Team: Multiple decision makers to achieve a common goal 5 / 18
Decentralized control systems Pioneers: Theory of teams Economics: Marschak, 1955; Radner, 1962 Systems and control: Witsenhausen, 1971; Ho, Chu, 1972 5 / 18
Decentralized control systems Pioneers: Theory of teams Economics: Marschak, 1955; Radner, 1962 Systems and control: Witsenhausen, 1971; Ho, Chu, 1972 Remote-state estimation as Team problem No packet drop - Marshak, 1954; Kushner, 1964; Åstrom, Bernhardsson, 2002; Xu and Hespanha, 2004; Imer and Basar, 2005; Lipsa and Martins, 2011; Molin and Hirche, 2012; Nayyar, Başar, Teneketzis and Veeravalli, 2013; D. Shi, L. Shi and Chen, 2015 With packet drop - Ren, Wu, Johansson, G. Shi and L. Shi, 2016; Chen, Wang, D. Shi and L. Shi, 2017; With noise - Gao, Akyol and Başar, 2015–2017 5 / 18
Remote-state estimation - Steps towards optimal solution Establish the structure of optimal strategies (transmission and estimation) Computation of optimal strategies and performances 6 / 18
Step 1 - Structure of optimal strategies: Lipsa-Martins 2011 & Molin-Hirsche 2012 - no packet drop Optimal estimator Time homogeneous! � if Y t � = E ; Y t , ˆ X t = g ∗ t ( Y t ) = g ∗ ( Y t ) = a ˆ if Y t = E . X t − 1 , 7 / 18
Step 1 - Structure of optimal strategies: Lipsa-Martins 2011 & Molin-Hirsche 2012 - no packet drop Optimal estimator Time homogeneous! � if Y t � = E ; Y t , ˆ X t = g ∗ t ( Y t ) = g ∗ ( Y t ) = a ˆ if Y t = E . X t − 1 , Optimal transmitter X t ∈ R ; U t is threshold based action: � if | X t − a ˆ 1 , X t | ≥ k U t = f ∗ t ( X t , U 0 : t − 1 ) = f ∗ ( X t ) = if | X t − a ˆ 0 , X t | < k 7 / 18
Step 1 - Structure of optimal strategies: Lipsa-Martins 2011 & Molin-Hirsche 2012 - no packet drop Optimal estimator Time homogeneous! � if Y t � = E ; Y t , ˆ X t = g ∗ t ( Y t ) = g ∗ ( Y t ) = a ˆ if Y t = E . X t − 1 , Optimal transmitter X t ∈ R ; U t is threshold based action: � if | X t − a ˆ 1 , X t | ≥ k U t = f ∗ t ( X t , U 0 : t − 1 ) = f ∗ ( X t ) = if | X t − a ˆ 0 , X t | < k Similar structural results for channel with packet drops. 7 / 18
Step 2 - The error process E t τ ( k ) : the time a packet was last received successfully. E t := X t − a t − τ ( k ) X τ ( k ) , E t := ˆ ˆ X t − a t − τ ( k ) X τ ( k ) ; 8 / 18
Step 2 - The error process E t τ ( k ) : the time a packet was last received successfully. E t := X t − a t − τ ( k ) X τ ( k ) , E t := ˆ ˆ X t − a t − τ ( k ) X τ ( k ) ; d ( X t − ˆ X t ) = d ( E t − ˆ E t ) . 8 / 18
Step 2 - The error process E t τ ( k ) : the time a packet was last received successfully. E t := X t − a t − τ ( k ) X τ ( k ) , E t := ˆ ˆ X t − a t − τ ( k ) X τ ( k ) ; = X t − a ( ˆ X t − 1 − ˆ E t − 1 ) � if Y t = E aE t − 1 + W t − 1 , = if Y t � = E W t , 8 / 18
Performance evaluation - JC-AM TAC ’17, NecSys ’16 � 1 , if | e | ≥ k f ( k ) ( e ) = 0 , if | e | < k Till first successful reception � τ ( k ) − 1 � L ( k ) � � β ( 0 ) := E β t d ( E t ) � E 0 = 0 � t = 0 � τ ( k ) − 1 β t � � M ( k ) � β ( 0 ) := E � E 0 = 0 � t = 0 � τ ( k ) � � K ( k ) � β t U t β ( 0 ) := E � E 0 = 0 � t = 0 9 / 18
Performance evaluation - JC-AM TAC ’17, NecSys ’16 � 1 , if | e | ≥ k f ( k ) ( e ) = E t is regenerative process 0 , if | e | < k Renewal relationships L ( k ) β ( 0 ) D ( k ) β ( 0 ) := D β ( f ( k ) , g ∗ ) = M ( k ) β ( 0 ) K ( k ) β ( 0 ) N ( k ) β ( 0 ) := N β ( f ( k ) , g ∗ ) = M ( k ) β ( 0 ) 9 / 18
Computation of D , N � � � φ ( n − ae ) L ( k ) if | e | ≥ k d ( e ) + β β ( n ) dn ε , L ( k ) n ∈ R β ( e ) = � φ ( n − ae ) L ( k ) if | e | < k , d ( e ) + β β ( n ) dn , n ∈ R 10 / 18
Computation of D , N � � � φ ( n − ae ) L ( k ) if | e | ≥ k d ( e ) + β β ( n ) dn ε , L ( k ) n ∈ R β ( e ) = � φ ( n − ae ) L ( k ) if | e | < k , d ( e ) + β β ( n ) dn , n ∈ R M ( k ) β ( e ) and K ( k ) β ( e ) defined in a similar way. 10 / 18
Computation of D , N � � � φ ( n − ae ) L ( k ) if | e | ≥ k d ( e ) + β β ( n ) dn ε , L ( k ) n ∈ R β ( e ) = � φ ( n − ae ) L ( k ) if | e | < k , d ( e ) + β β ( n ) dn , n ∈ R ε = 0: Fredholm integral equations of second kind - bisection method to compute optimal threshold ε � = 0: Fredholm-like equation; discontinuous kernel, infinite limit - analytical methods difficult 10 / 18
Optimality condition (JC & AM: TAC’17, NecSys ’16) D ( k ) β , N ( k ) β , C ( k ) - differentiable in k β Theorem - costly communication If ( k , λ ) satisfies ∂ k D ( k ) + λ∂ k N ( k ) = 0, then, ( f ( k ) , g ∗ ) optimal β β for costly comm. with cost λ . 11 / 18
Optimality condition (JC & AM: TAC’17, NecSys ’16) D ( k ) β , N ( k ) β , C ( k ) - differentiable in k β Theorem - costly communication If ( k , λ ) satisfies ∂ k D ( k ) + λ∂ k N ( k ) = 0, then, ( f ( k ) , g ∗ ) optimal β β for costly comm. with cost λ . β ( λ ) := C β ( f ( k ) , g ∗ ; λ ) is continuous, increasing and concave in λ . C ∗ 11 / 18
Recommend
More recommend