GalFRESCA 2017 Stellar feedback strongly alters the amplification and morphology of galactic magnetic fields Kung-Yi Su TAPIR, California Institute of Technology
Collaborators Prof . Philip F . Hopkins Chris Hayward Prof. Claude-André Prof. Du š an Kere š Prof. Eliot Quataert Faucher-Giguère
? Magnetic Field Baryonic physics Amplification
Baryonic physics Stellar Feedback - FIRE - Sub-grid (S&H) ? Magnetic Field Amplification
Baryonic physics Stellar Feedback - FIRE - Sub-grid (S&H) ? Magnetic Field Amplification Cooling Physics - Low temperature?
Baryonic physics Stellar Feedback - FIRE - Sub-grid (S&H) ? Magnetic Field Amplification Cooling Physics - Low temperature? Star Formation
GIZMO + MHD (Hopkins and Raives 2016) Stellar Feedback FIRE Stellar Feedback - SNe, Stellar Winds, Photo-ionization, Photo- electric heating, Radiation pressure Sub-grid - Springel and Hernquist (2003) - Effective equation of state - Implicitly 2 phase ISM
SMC : Small Magellanic Cloud-like dwarf MW : Milky Way-like galaxy Model Star Formation Cooling Feedback Adiabatic NO None None NoFB Yes 10-10 10 K None FIRE Yes 10-10 10 K FIRE Springel & S&H Yes 10 4 -10 10 K Hernquist
Magnetic Field Morphology MW
Magnetic Field Morphology MW
Magnetic Field Morphology MW
Magnetic Field Morphology SMC
Randomness of Magnetic Field 1 . 0 SMC MW 0 . 8 ξ 1 = | h B i | / h B 2 i 1 / 2 ξ 2 = h | B | i / h B 2 i 1 / 2 B ave / B rms 0 . 6 Adiabatic 0 . 4 SH NoFB 0 . 2 FIRE 0 . 0 10 � 3 10 � 1 10 � 3 10 � 1 10 1 10 3 10 1 10 3 Density [n/cm 3 ] Density [n/cm 3 ]
Magnetic Field Amplification SMC MW 10 1 Magnetic Field [ µ G] Adiabatic log(Magnetic Field) [ µ G] 10 0 NoFB SH 10 − 1 FIRE FIRE-low 10 − 2 All Gas 10 − 3 n > 1 cm − 3 0 . 0 0 . 2 0 . 4 0 . 6 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 Time [Gyr] Time [Gyr] Magnetic fields in dense particles differ a lot
Magnetic Field Amplification SMC MW 10 1 Magnetic Field [ µ G] Adiabatic log(Magnetic Field) [ µ G] 10 0 NoFB SH 10 − 1 FIRE FIRE-low 10 − 2 All Gas 10 − 3 n > 1 cm − 3 0 . 0 0 . 2 0 . 4 0 . 6 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 Time [Gyr] Time [Gyr] Magnetic fields in dense particles differ a lot
Magnetic Field Amplification SMC MW 10 1 Magnetic Field [ µ G] Adiabatic log(Magnetic Field) [ µ G] 10 0 NoFB SH 10 − 1 FIRE FIRE-low 10 − 2 All Gas 10 − 3 n > 1 cm − 3 0 . 0 0 . 2 0 . 4 0 . 6 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 Time [Gyr] Time [Gyr] Magnetic fields in dense particles differ a lot
Turbulent & Magnetic Energy 10 13 SMC MW 10 12 Energy / Mass [erg/g] Turbulent 10 11 Magnetic 10 10 Nofb SH Fire 10 9 Fire FIRE-lo 10 8 FIRE-low 10 7 10 6 0 . 0 0 . 2 0 . 4 0 . 6 0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 Time [Gyr] Time [Gyr] Magnetic energy ~ 2-6% of Turbulent Supersonic turbulent dynamo
Magnetic & Density 10 3 SMC MW 10 2 Adiabatic SH 10 1 B rms [ µ G] NoFB 10 0 FIRE Initial Condition 10 − 1 10 − 2 10 − 3 10 − 3 10 − 1 10 1 10 3 10 − 3 10 − 1 10 1 10 3 Density [n/cm 3 ] Density [n/cm 3 ] B ∝ n 2/3 - Flux freezing isotropic compression/ expansion - Gravitational energy ~ Magnetic energy
Magnetic & Density 10 3 SMC MW 10 2 Adiabatic SH 10 1 B rms [ µ G] NoFB 10 0 FIRE Initial Condition 10 − 1 10 − 2 10 − 3 10 − 3 10 − 1 10 1 10 3 10 − 3 10 − 1 10 1 10 3 Density [n/cm 3 ] Density [n/cm 3 ] B ∝ n 2/3 - Flux freezing isotropic compression/ expansion - Gravitational energy ~ Magnetic energy
Outflows 1 M out flow /dlogn) [M � /yr] MW SMC 0 Adiabatic S&H � 1 NoFB FIRE � 2 � 3 log(d˙ � 4 � 5 � 6 � 4 � 2 0 2 4 � 6 � 4 � 2 0 2 4 Density [n/cm 3 ] Density [n/cm 3 ] Feedback driven >> Magnetic driven
Summary Sub-grid model (effective EOS) Reasonable result in gas with lower density Worse dense gas More ordered large scale magnetic field B ∝ n 2/3 Flux freezing isotropic compression/ expansion Gravitational energy ~ Magnetic energy
Divergence Cleaning Numerical error of builds up r · B S = S Powell + S Dedner Powell 8 wave Dedner - Transport and Damp -Subtract the divergence 0 0 0 B B · ( r ψ ) = � v · B = �r · B v r ψ ( r · B ) ρ c 2 h + ρψ / τ 0 back Powell (1999) Dedner et al. (2002)
back Turbulent energy
back Turbulent energy 10 Kpc Particles in the gas disk 1Kpc
back Turbulent energy 10 Kpc Particles in the gas disk Cut into annuli 1Kpc
back Turbulent energy 10 Kpc Particles in the gas disk Cut into annuli Fixed particle number 1Kpc
back Turbulent energy 10 Kpc Particles in the gas disk Cut into annuli Fixed particle number Subtract V rot 1Kpc
back Turbulent energy 10 Kpc Particles in the gas disk Cut into annuli Fixed particle number Subtract V rot Subtract wind 1Kpc
back Turbulent energy 10 Kpc Particles in the gas disk Cut into annuli Fixed particle number Subtract V rot Subtract wind Cut into rings 1Kpc
back Turbulent energy 10 Kpc Particles in the gas disk Cut into annuli Fixed particle number Subtract V rot Subtract wind Cut into rings Same particle number 1Kpc
back Turbulent energy 10 Kpc Particles in the gas disk Cut into annuli Fixed particle number Subtract V rot Subtract wind Cut into rings Same particle number Cut into cells with 1Kpc 15 particles
back Turbulent energy 10 Kpc Particles in the gas disk Cut into annuli Fixed particle number Subtract V rot Subtract wind Cut into rings Same particle number Cut into cells with 1Kpc 15 particles Subtract V group and other outflow
back Turbulent energy 10 Kpc Particles in the gas disk Cut into annuli Fixed particle number Subtract V rot Subtract wind Cut into rings Same particle number Cut into cells with 1Kpc 15 particles Subtract V group E Turbulent = Remaining kinetic energy and other outflow
Recommend
More recommend