event-by-event viscous relativistic hydrodynamics Caio A. G. Prado with Jacquelyn Noronha-Hostler, Mauro R. Cosentino, Marcelo G. Munhoz, Jorge Noronha and Alexandre A. P. Suaide Strangeness in Quark Matter 2016 UC Berkeley β June 30, 2016 Heavy flavor π AA and π€ π in
Introduction MC@HQ+EPOS, Coll+Rad (LPM) 6 9 12 0 0.25 TAMU POWLANG with frag. 0 BAMPS el. BAMPS el. + rad. (QM2015) AIP Conference Proceedings 1625 , 226β229 (2014) arXiv:1606.00321 Caio Prado SQM2016 β Heavy flavor event-by-event relativistic hydrodynamics June 30, 2016 Status quo 3 1 / 16 5 0.6 0.9 1.2 Coll. + LPM 15 10 π (electrons) 0 AA 0 ALICE (prelim.) BAMPS Rapp et al. POWLANG 0.3 ALICE, π Β± β HF τΏπ§τΏ < 0.7 π€ 2 { EP , τΏΞπτΏ > 0.9} 20β40% Pb-Pb, βπ‘ NN = 2.76 TeV 0β10% Pb-Pb, βπ‘ NN = 2.76 TeV π π ( GeV ) π π (GeV)
Introduction Open questions harmonics? energy loss model? sector? approach affect these observables? Caio Prado SQM2016 β Heavy flavor event-by-event relativistic hydrodynamics June 30, 2016 2 / 16 οΏ½ What happens with the higher Fourier οΏ½ How sensitive are these observables to the οΏ½ Is there collectivity in the heavy flavor οΏ½ How do fluctuations in an event-by-event
Introduction 2π June 30, 2016 SQM2016 β Heavy flavor event-by-event relativistic hydrodynamics Caio Prado Ξ¨ 3 Ξ¨ 2 π = 6 π = 5 π = 4 π = 3 π = 2 Observables d 2 π 1 d 3 π πΉ ; dππ dπ pp π coll dπ AA 3 / 16 οΏ½ Nuclear Modification Factor: π AA (π π , π) = dππ dπ οΏ½ Collective flow: π π dπ π dπ§ τΏΌ1 + β π 2π€ π cos τΏ―π τΏ΅π β Ξ¨ π τΏΈτΏ²τΏΏ ; dπ 3 = οΏ½ Multi-particle Cumulants: οΏ½ 2-, 4-, 6- and 8-particle.
Simulation Development Details of the modeling June 30, 2016 SQM2016 β Heavy flavor event-by-event relativistic hydrodynamics Caio Prado medium. with the medium. study. 4 / 16 οΏ½ Develop a Monte Carlo simulation; οΏ½ C++ programming language; οΏ½ ROOT and Pythia8. οΏ½ Modular paradigm (QCD factorization): οΏ½ Initial conditions (MCKLN); οΏ½ Event-by-event hydrodynamics (v-USPhydro); οΏ½ Energy loss model; οΏ½ Hadronization; οΏ½ Meson decay; οΏ½ Heavy quarks (bottom and charm) are probes: οΏ½ What happens in the heavy-flavor sector? οΏ½ High multiplicity experiments allow for the heavy-flavor οΏ½ Sampled at the beginning of the simulation and evolved οΏ½ We currently neglect any effect of the probes on the
Simulation Development 2 June 30, 2016 SQM2016 β Heavy flavor event-by-event relativistic hydrodynamics Caio Prado Energy Loss and Hadronization 5 / 16 1 PRC 72 064910 (2005); arXiv:1602.03788 [nucl-th]. οΏ½ Simple energy loss model: dπΉ dπ¦ (π, π€; π½) = π½Ξ flow π(π, π€) ; Ξ flow = πΏ τΏ―1 β π€ cos(π quark β π flow )τΏ² . οΏ½ Fit the π½ parameter: Fit π½ charm using D 0 π AA data; With fixed π½ charm , fit π½ bottom using electron π AA data; οΏ½ The energy loss model can be changed at will. οΏ½ Hadronization using Peterson fragmentation function: οΏ½ Occurs after heavy-quarks have crossed π frag isothermal; οΏ½ Currently not implementing coalescence; οΏ½ Decays performed by Pythia8.
Results Electron π AA 20 0 0.3 0.6 0.9 1.2 π (electron) AA ALICE Nuclear modification factor Charm Bottom Total *Gray area: where coalescence should be important. QM2015 (ALICE); CMS-PAS-HIN-15-005 (CMS) (QM2015) AIP Conference Proceedings 1625 , 226β229 (2014) Caio Prado SQM2016 β Heavy flavor event-by-event relativistic hydrodynamics June 30, 2016 15 10 5 0.6 dπΉ 10 20 30 40 0 Simulation 0.3 0.9 1.2 π D 0 AA ALICE CMS 6 / 16 οΏ½ dπ¦ = π½Ξ flow π frag = 140 MeV. PLB 747 260β264 (2015) D 0 π AA 0β10% Pb-Pb, βπ‘ NN = 2.76 TeV 0β10% Pb-Pb, βπ‘ NN = 2.76 TeV π T (GeV) π T (GeV)
Results 0.9 20 30 40 0 0.3 0.6 1.2 B meson π AA π AA dπΉ dπΉ dπΉ Caio Prado SQM2016 β Heavy flavor event-by-event relativistic hydrodynamics June 30, 2016 Nuclear modification factor 10 dπΉ 0.9 10 20 30 40 0.3 0.6 0 1.2 dπΉ 7 / 16 dπΉ π AA οΏ½ π AA is highly affected by the energy loss model! οΏ½ π frag = 140 MeV. D 0 meson π AA dπ¦ = π½π 2 dπ¦ = π½π 2 dπ¦ = π½ dπ¦ = π½ dπ¦ = π½π€πΏ dπ¦ = π½π€πΏ 0β10% Pb-Pb, βπ‘ NN = 2.76 TeV 0β10% Pb-Pb, βπ‘ NN = 2.76 TeV π π (GeV) π π (GeV)
Results π π {6} June 30, 2016 SQM2016 β Heavy flavor event-by-event relativistic hydrodynamics Caio Prado PRC 83 044913 (2011); PRC 89 064904 (2014); CMS-PAS-HIN-15-014 (CMS). τΏ―33(βπ π {8}) 7 τΏ² βπ π {8} π€ π {8}(π π ) = Multi-particle cumulants τΏ―4(π π {6}) 5 τΏ² π€ π {6}(π π ) = τΏ΅βπ π {4}τΏΈ βπ π {4} π€ π {4}(π π ) = heavy-quarks!!! First calculation of cumulants event-by-event for 8 / 16 οΏ½ π π {4} = τΎβ¨4β©τ½½ β 2 τΎβ¨2β©τ½½ 2 3/4 ; οΏ½ π π {6} = τΎβ¨6β©τ½½ β 9 τΎβ¨4β©τ½½ τΎβ¨2β©τ½½ + 12 τΎβ¨2β©τ½½ 3 1/6 ; οΏ½ π π {8} = τΎβ¨8β©τ½½ β 16 τΎβ¨6β©τ½½ τΎβ¨2β©τ½½ β 18 τΎβ¨4β©τ½½ 2 + 144 τΎβ¨4β©τ½½ τΎβ¨2β©τ½½ 2 β 144 τΎβ¨2β©τ½½ 4 1/8 .
Results 0.15 light 2 β1 β0.5 0 0.5 1 Ξ¨ heavy 2 0.05 0.1 π€ 1 light 2 0.02 0.04 0.06 0.08 0.1 π€ heavy 2 Caio Prado SQM2016 β Heavy flavor event-by-event relativistic hydrodynamics June 30, 2016 Ξ¨ 0 Elliptic flow π π€ π {2}(π π ) = τΎπ€ heavy π (π π )π€ light π heavy π (π π ) β Ξ¨ β1 light τΏΈτΏ²τ½Ύ τ½± τΎτΏ΅π€ light π τΏΈ 2 τ½Ύ . Heavy sector inherits geometrical fluctuations of soft sector; PRL 116 252301 (2016). 9 / 16 οΏ½ Correlation between light quarks in a small π π bin and heavy quarks: cos τΏ―π τΏ΅Ξ¨ οΏ½
Results 0.08 10 15 20 0 0.02 0.04 0.06 0.1 B meson π€ 2 {2} π€ 2 {2} dπΉ dπΉ dπΉ Caio Prado SQM2016 β Heavy flavor event-by-event relativistic hydrodynamics June 30, 2016 π€ 2 {2} β Energy loss dependence 5 dπΉ 0.08 5 10 15 20 0.02 0.04 0.06 0 0.1 dπΉ 10 / 16 dπΉ π€ 2 {2} οΏ½ π frag = 140 MeV; οΏ½ π€ 2 {2} depends heavily on the energy loss model. D 0 meson π€ 2 {2} dπ¦ = π½π 2 dπ¦ = π½ dπ¦ = π½π 2 dπ¦ = π½ dπ¦ = π½π€πΏ(π€) dπ¦ = π½π€πΏ(π€) 30β50% Pb-Pb, βπ‘ NN = 2.76 TeV 30β50% Pb-Pb, βπ‘ NN = 2.76 TeV π π (GeV) π π (GeV)
Results B meson π€ 2 {2} June 30, 2016 SQM2016 β Heavy flavor event-by-event relativistic hydrodynamics Caio Prado π€ 2 {2} 0.1 0.08 0.06 0.04 0.02 0 20 15 10 5 11 / 16 π€ 2 {2} 0.04 dπΉ 5 10 15 0 0.02 20 0.06 0.1 0.08 π€ 2 {2} β π frag dependence οΏ½ dπ¦ = π½Ξ flow ; οΏ½ The increase of π frag decreases the flow. D 0 meson π€ 2 {2} π frag = 120 MeV π frag = 120 MeV π frag = 130 MeV π frag = 130 MeV π frag = 140 MeV π frag = 140 MeV π frag = 150 MeV π frag = 150 MeV π frag = 160 MeV π frag = 160 MeV 30β50% Pb-Pb, βπ‘ NN = 2.76 30β50% Pb-Pb, βπ‘ NN = 2.76 π T (GeV) π T (GeV)
Results 0.05 5 10 15 20 0.02 0.03 0.04 0.06 π€ 2 {6} π€ 2 π€ 2 {2} π€ 2 {4} π€ 2 {6} π€ 2 {8} Caio Prado SQM2016 β Heavy flavor event-by-event relativistic hydrodynamics June 30, 2016 Convergence of cumulants! π€ 2 {8} π€ 2 {4} 0.02 dπΉ B meson; sector. 5 10 15 π€ 2 {2} 20 0.03 0.04 0.05 0.06 π€ 2 12 / 16 οΏ½ dπ¦ = π½Ξ flow οΏ½ Convergence may indicate collectivity in the heavy π frag = 120 MeV π frag = 160 MeV 30β50% Pb-Pb, βπ‘ NN = 2.76 TeV 30β50% Pb-Pb, βπ‘ NN = 2.76 TeV π π (GeV) π π (GeV)
Results 0.08 5 10 15 20 0.02 0.04 0.06 π€ 2 π€ 2 {6} π€ 2 {2} π€ 2 {4} π€ 2 {6} π€ 2 {8} Caio Prado SQM2016 β Heavy flavor event-by-event relativistic hydrodynamics June 30, 2016 Convergence of cumulants! π€ 2 {8} π€ 2 {4} 0.02 dπΉ sector. 5 10 π€ 2 {2} 20 15 0.04 0.06 0.08 π€ 2 13 / 16 οΏ½ D 0 meson. dπ¦ = π½Ξ flow οΏ½ Convergence may indicate collectivity in the heavy π frag = 120 MeV π frag = 160 MeV 30β50% Pb-Pb, βπ‘ NN = 2.76 TeV 30β50% Pb-Pb, βπ‘ NN = 2.76 TeV π π (GeV) π π (GeV)
Results π€ 3 {2} June 30, 2016 SQM2016 β Heavy flavor event-by-event relativistic hydrodynamics Caio Prado π€ 3 {2} 0.02 0.01 0 20 15 10 5 B meson π€ 3 {2} 0.02 0 dπΉ 5 0.01 15 20 10 14 / 16 π€ 3 for heavy flavor! οΏ½ dπ¦ = π½Ξ flow ; οΏ½ First calculation of π€ 3 {2} β 0 for heavy-quark!!! οΏ½ π€ 3 {2} also decreases with the increase of π frag . D 0 meson π€ 3 {2} π frag = 120 MeV π frag = 120 MeV π frag = 130 MeV π frag = 130 MeV π frag = 140 MeV π frag = 140 MeV π frag = 150 MeV π frag = 150 MeV π frag = 160 MeV π frag = 160 MeV 30β50% Pb-Pb, βπ‘ NN = 2.76 30β50% Pb-Pb, βπ‘ NN = 2.76 π T (GeV) π T (GeV)
Recommend
More recommend