stationary states in 2d systems driven by l evy noises
play

Stationary states in 2D systems driven by L evy noises Bart lomiej - PowerPoint PPT Presentation

Stationary states in 2D systems driven by L evy noises Bart lomiej Dybiec and Krzysztof Szczepaniec Department of Statistical Physics, Institute of Physics, Jagiellonian University Krak ow, Poland Unsolved Problems of Noise


  1. Stationary states in 2D systems driven by L´ evy noises Bart� lomiej Dybiec and Krzysztof Szczepaniec Department of Statistical Physics, Institute of Physics, Jagiellonian University Krak´ ow, Poland Unsolved Problems of Noise Barcelona, 16th July 2015 Supported by:

  2. Motivation: Boltzmann-Gibbs distribution In the equilibrium � − E � P (state) ∝ exp , k B T T – system temperature, E – energy of the state. For an overdamped particle the Langevin equation is dx dt = − V ′ ( x ) + � 2 k B T ξ ( t ) . Particle’s energy is E = V ( x ) and the stationary distribution � − V ( x ) � P ( x ) ∝ exp k B T is fully determined by the potential V ( x ). Bart� lomiej Dybiec Stationary states in 2D

  3. Motivation & Outlook Motivation Examination of stationary states for more general noises. Road map of presentation basic definitions: 1D α -stable noises, 2D α -stable noises. stationary states for 1D and 2D systems. Try to understand role of increasing spatial dimensionality, universalities of noise driven systems. Take home message 2D α -stable noises differs from their 1D analogs but systems driven by 2D α stable noises display universal properties. Bart� lomiej Dybiec Stationary states in 2D

  4. Noise in 1D A random variable is X is stable if AX (1) + BX (2) d = CX + D , where X (1) and X (2) are independent copies of X , d = denotes equality in distributions. The random variable X is called strictly stable if D = 0. The random variable X is symmetric stable if it is stable and Prob { X } = Prob {− X } . The random variable is α -stable if C = ( A α + B α ) 1 /α where 0 < α � 2. The characteristic function of α -stable densities is − σ α | k | α � 1 − i β sign k tan πα  � � � exp + i µ k 2   if α � = 1 , � e ikX �  φ ( k ) = E = 1 + i β 2 � � � � exp − σ | k | π sign k ln | k | + i µ k   if α = 1 ,  where α ∈ (0 , 2], β ∈ [ − 1 , 1], σ > 0 and µ ∈ R . Bart� lomiej Dybiec Stationary states in 2D G. Samorodnitsky, and M. S. Taqqu, Stable NonGaussian Random Processes , (Chapman & Hall 1994).

  5. 1D Characteristic function  � − σ α | k | α � � � exp 1 − i β sign k tan πα + i µ k , for α � = 1 ,  2 φ ( k ) = � � 1 + i β 2 � � exp − σ | k | π sign k ln | k | + i µ k , for α = 1 ,  asymptotic behavior P ( x ) ∝ | x | − ( α +1) ( α < 2), 0.6 Gauss Cauchy Normal distribution ( α = 2 , β = 0) 0.5 α =0.5 0.4 ( x − µ ) 2 � � 1 P(x) 0.3 √ exp − , 2 σ 2 2 πσ 0.2 0.1 Cauchy distribution ( α = 1 , β = 0) 0 -4 -3 -2 -1 0 1 2 3 4 x σ 1 α =0.9 α =1.5 ( x − µ ) 2 + σ 2 , 0.45 0.45 π β =-1.0 β =-1.0 β =-0.5 β =-0.5 0.4 0.4 β =0.0 β =0.0 β =0.5 β =0.5 0.35 β =1.0 0.35 β =1.0 0.3 0.3 L´ evy-Smirnoff distribution (fully asymmetric, α = 1 0.25 0.25 2 , β = 1) P(x) P(x) 0.2 0.2 0.15 0.15 � σ � 1 0.1 0.1 � � 2 ( x − µ ) − 3 σ 2 exp 0.05 0.05 − . 2 π 2( x − µ ) 0 0 -20-15-10 -5 0 5 10 15 20 -6 -4 -2 0 2 4 6 x x Bart� lomiej Dybiec Stationary states in 2D

  6. Noise 2D Analogously like in 1D: Random vector X = ( X 1 , . . . , X d ) is said to be a stable random vector in R d if for any positive numbers A and B , there is a positive number C and a vector D such that A X (1) + B X (2) d = C X + D , where X (1) and X (2) are independent copies of X , d = denotes equality in distributions. The vector X is called strictly stable if D = 0 . The vector X is symmetric stable if it is stable and Prob { X ∈ A } = Prob {− X ∈ A } for any Borel set A of R d . A random vector is α -stable if C = ( A α + B α ) 1 /α where 0 < α � 2. Bart� lomiej Dybiec Stationary states in 2D

  7. 2D e i � k , X � � � The characteristic function φ ( k ) = E of the α -stable vector X = ( X 1 , . . . , X d ) in R d is  � � Γ( d s ) + i � k , µ 0 � � S d |� k , s �| α � � exp − 1 − i sign( � k , s � ) tan πα  2    for α � = 1 ,  φ ( k ) = � � 1 + i 2 Γ( d s ) + i � k , µ 0 � � S d |� k , s �| α � � exp − π sign( � k , s � ) ln( � k , s � )     for α = 1 ,  where S d is a unit sphere in R d and Γ( · ) is a spectral measure. G. Samorodnitsky, and M. S. Taqqu, Stable NonGaussian Random Processes , (Chapman & Hall 1994). Bart� lomiej Dybiec Stationary states in 2D

  8. Cauchy distribution α =1 For symmetric spectral measure concentrated on intersections of the axes with the unit sphere S 2 the bi-variate Cauchy ( α = 1) distribution is p ( x , y ) = 1 ( x 2 + σ 2 ) × 1 σ σ ( y 2 + σ 2 ) . π π For continuous and uniform 0.9 0.7 spectral measure 0.5 0.3 0.1 p ( x , y ) = 1 σ � 6 � 4 � 2 0 2 4 6 ( x 2 + y 2 + σ 2 ) 3 / 2 . 2 π Bart� lomiej Dybiec Stationary states in 2D

  9. Equations in 1D The Langevin equation dx dt = − V ′ ( x ) + σζ α, 0 ( t ) , dx = − V ′ ( x ) dt + σ dL α, 0 ( t ) is associated with the fractional Smoluchowski-Fokker-Planck equation + σ α ∂ α p ( x , t ) ∂ p ( x , t ) ∂ V ′ ( x ) p ( x , t ) � � = ∂ | x | α ∂ t ∂ x ∂ V ′ ( x ) p ( x , t ) − σ α ( − ∆) α/ 2 p ( x , t ) . � � = ∂ x The fractional Riesz-Weil derivative is defined via its Fourier transform � ∂ α p ( x , t ) � � � − ( − ∆) α/ 2 p ( x , t ) = −| k | α F [ p ( x , t )] . F = F ∂ | x | α P. D. Ditlevsen, Phys. Rev. E 60 172 (1999). D. Schertzer and M. Larchevˆ eque, J. Duan, V. V. Yanowsky, S. Lovejoy, J. Math. Phys. 42 200 (2001). Bart� lomiej Dybiec Stationary states in 2D

  10. Equations in 1D For α < 2, and V ( x ) = | x | c stationary states exist for c > 2 − α . Stationary states (if exist) have power-law asymptotics p st ( x ) ∝ | x | − ( c + α − 1) . For c = 2 the stationary density is the same as the stable distribution associated with the underlying noise. 4 x 4 and α = 1 For V ( x ) = 1 σ p st ( x ) = π ( σ 4 / 3 − σ 2 / 3 x 2 + x 4 ) . A. V. Chechkin, J. Klafter, V. Yu. Gonchar, R. Metzler and L. V. Tanatarov, Chem. Phys. 284 233 (2002); Phys. Rev. E 67 , 010102 (2003). B. Dybiec, I. M. Sokolov, A. V. Chechkin, J. Stat. Mech. P07008 (2010). Bart� lomiej Dybiec Stationary states in 2D

  11. Stationary states (quartic – V ( x ) = x 4 / 4 – potential) For α = 2, the stationary states are of the Boltzmann-Gibbs type, i.e. P ( x ) ∝ exp[ − V ( x )]. 0.45 Cauchy √ 0.4 Gauss − x 4 2 � � 0.35 P 2 ( x ) = 4 ) exp . Γ( 1 4 0.3 0.25 P st (x) 0.2 For α < 2, stationary solutions are 0.15 no longer of the Boltzmann-Gibbs 0.1 type. For α = 1 0.05 0 -3 -2 -1 0 1 2 3 x 1 P 1 ( x ) = π ( x 4 − x 2 + 1) . A. V. Chechkin, J. Klafter, V. Yu. Gonchar, R. Metzler and L. V. Tanatarov, Chem. Phys. 284 233 (2002); Phys. Rev. E 67 , 010102 (2003). Bart� lomiej Dybiec Stationary states in 2D

  12. Equations in 2D 2D Langevin equation d r dt = −∇ V ( r ) + σ ζ α ( t ) , d r = −∇ V ( r ) dt + σ d L α ( t ) . Especially interesting potentials are 2 r 2 = 1 2 ( x 2 + y 2 ), harmonic: V ( x , y ) = 1 4 r 4 = 1 4 ( x 2 + y 2 ) 2 . quartic: V ( x , y ) = 1 Bart� lomiej Dybiec Stationary states in 2D

  13. Bivariate Gaussian 0.4 0.3 0.3 0.2 p(x,y) p(x,y) p(x,y) p(x,y) 0.2 0.1 0.1 0 0 0 0 1.5 1.5 0.5 0.5 1 1 x x 1 0.5 1 0.5 y y 1.5 0 1.5 0 2 0.4 2 0.3 1 0.3 1 0.2 0 0.2 0 0.1 -1 0.1 -1 -2 0 -2 0 -2 -1 0 1 2 -2 -1 0 1 2 2 ( x 2 + y 2 ) (left panel) and V ( x , y ) = 1 4 ( x 2 + y 2 ) 2 V ( x , y ) = 1 (right panel) subject to the bi-variate, uniform Gaussian white noise ( α = 2). Bart� lomiej Dybiec Stationary states in 2D

  14. Equations in 2D The associated Smoluchowski-Fokker-Planck equation ∂ p ( r , t ) = ∇ · [ ∇ V ( r ) p ( r , t )] + σ α Ξ p ( r , t ) , ∂ t where Ξ is the fractional operator. ∇ · [ ∇ V ( r ) p ( r , t )] originates due to the deterministic force F ( r ) = −∇ V ( r ) acting on a test particle. For the bi-variate α -stable noise with the uniform spectral measure the fractional operator Ξ = − ( − ∆) α/ 2 . For the bi-variate α -stable noise with the discrete symmetric spectral measure (located on intersections of S 2 with axis) ∂ α ∂ α Ξ = ∂ | x | α + ∂ | y | α . S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications (Gordon and Breach, Yverdon, 1993). A. V. Chechkin, V. Y. Gonchar, and M. Szydlowski, Phys. Plasmas 9 , 78 (2002). Bart� lomiej Dybiec Stationary states in 2D

  15. Bivariate Cauchy – parabolic potential 0.4 0.05 0.04 0.3 p(x,y) p(x,y) p(x,y) p(x,y) 0.03 0.2 0.02 0.1 0.01 0 0 0 0 0.5 1.5 2.5 2 0.5 1 1 1.5 1.5 x x 1 1 0.5 y y 2 2.5 0 0.5 1.5 0 2 0.4 3 0.05 2 0.04 1 0.3 1 0.03 0 0.2 0 0.02 -1 -1 0.1 0.01 -2 -2 0 -3 0 -2 -1 0 1 2 -3 -2 -1 0 1 2 3 2 ( x 2 + y 2 ) with α = 1 (Cauchy noise). V ( x , y ) = 1 Bart� lomiej Dybiec Stationary states in 2D

Recommend


More recommend