static failure
play

Static Failure Lecture 18 ME EN 372 Andrew Ning aning@byu.edu - PDF document

Static Failure Lecture 18 ME EN 372 Andrew Ning aning@byu.edu Outline Static Failure Maximum Shear Stress Theory (or Tresca Theory) Distortion Energy Theory (or von Mises Theory) Static Failure Ductile vs. Brittle Maximum Shear Stress


  1. Static Failure Lecture 18 ME EN 372 Andrew Ning aning@byu.edu Outline Static Failure Maximum Shear Stress Theory (or Tresca Theory) Distortion Energy Theory (or von Mises Theory)

  2. Static Failure Ductile vs. Brittle

  3. Maximum Shear Stress Theory (or Tresca Theory) F σ x = F A A

  4. Distortion Energy Theory (or von Mises Theory)

  5. triaxial hydrostatic distortional Distortional strain energy: u d = u − u h � ( σ 1 − σ 2 ) 2 + ( σ 2 − σ 3 ) 2 + ( σ 3 − σ 1 ) 2 = 1 + ν � 3 E 2

  6. σ ′ ≤ σ y where � ( σ 1 − σ 2 ) 2 + ( σ 2 − σ 3 ) 2 + ( σ 3 − σ 1 ) 2 � 1 / 2 σ ′ = 2 von Mises Max Shear

  7. In terms of xyz components (rather than principal stresses): σ ′ = 1 xz )] 1 / 2 2[( σ x − σ y ) 2 +( σ y − σ z ) 2 +( σ z − σ x ) 2 +6( τ 2 xy + τ 2 yz + τ 2 √ If in plane stress: σ ′ = ( σ 2 xy ) 1 / 2 x − σ x σ y + σ 2 y + 3 τ 2

Recommend


More recommend