standard cad t ool based method for simulation of laser
play

Standard CAD T ool-Based Method for Simulation of Laser-Induced - PowerPoint PPT Presentation

ISPD'18 March 28, 2018 Standard CAD T ool-Based Method for Simulation of Laser-Induced Faults in Large-Scale Circuits Raphael Viera - raphael@ieee.org Philippe Maurine, Jean-Max Dutertre and Rodrigo Bastos ISPD'18 March 28, 2018 Standard


  1. 3 - Proposed model 3.1 - Upgraded electrical model Classical Model Upgraded Electrical Model Power grid model I Ph I Ph >> '1' >> '1' '1' '0' '1' '0' I P psub_nwel C Load C Load Power grid model (>10) J.M. Dutertre et al., “Improving the ability of Bulk Built-In Current Sensors to detect Single Event E ff ects by using triple-well CMOS 13

  2. 3 - Proposed model 3.1 - Upgraded electrical model Upgraded Electrical Model Power grid model PU I Ph 'X' 'Y' I P psub_nwel C Load I Ph PD Power grid model (>10) 13

  3. 3 - Proposed model 3.1 - Upgraded electrical model Upgraded Electrical Model Power grid model Main issue: dimensioning the RC network! PU I Ph 'X' 'Y' 1V 1V I P psub_nwel C Load I Ph PD Power grid model (>10) 13

  4. Outline 1 Motivation 2 Classical model of laser fault injection and its limits 3 Proposed model 4 Simulation methodology 5 Simulation results 6 Conclusions

  5. Outline 1 Motivation 2 Classical model of laser fault injection and its limits 3 Proposed model 4 Simulation methodology 5 Simulation results 6 Conclusions

  6. 4 - Simulation methodology De fi ne simulation parameters 1 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog Set the (x,y) spatial location of the laser spot 3 De fi ne the amplitude of I Ppsub_nwell current 4 for each cell in the design according to Eq. 1 Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit Replace the nominal supply voltage 6 from the original netlist Add IPh current to each cell in the circuit 7 Perform electrical simulation 8 for a laser spot location (x,y) END 14

  7. 4 - Simulation methodology De fi ne simulation parameters 1 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog Set the (x,y) spatial location of the laser spot 3 De fi ne the amplitude of I Ppsub_nwell current 4 for each cell in the design according to Eq. 1 Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit Replace the nominal supply voltage 6 from the original netlist Add IPh current to each cell in the circuit 7 Perform electrical simulation 8 for a laser spot location (x,y) END 14

  8. 4 - Simulation methodology De fi ne simulation parameters 1 Laser beam diameter - Laser shot power Beam intensity (%) 100 5µm 80 60 40 20 0 7.5 5 7.5 2.5 5 0 2.5 0 2.5 2.5 5 5 7.5 7.5 Distance ( µ m) Distance ( µ m) 14

  9. 4 - Simulation methodology De fi ne simulation parameters 1 Laser beam diameter - Laser shot power Laser shot duration I transient (µA) Beam intensity (%) 100 5µm Rise 80 time Fall time 60 40 Peak value defined by (1) = I Ph_peak 20 0 7.5 5 7.5 2.5 5 0 2.5 0 2.5 t (ps) 2.5 5 5 7.5 0 7.5 Distance ( µ m) Distance ( µ m) 14

  10. 4 - Simulation methodology De fi ne simulation parameters 1 Laser beam diameter - Laser shot power Laser shot duration I transient (µA) Beam intensity (%) 100 5µm Rise 80 time Fall time 60 40 Peak value defined by (1) = I Ph_peak 20 0 7.5 5 7.5 2.5 5 0 2.5 0 2.5 t (ps) 2.5 5 5 7.5 0 7.5 Distance ( µ m) Distance ( µ m) Time at which the laser shot occurs w.r.t. the zero of the simulation 1 Volts CLK 0.5 0 I peak µA 0 0 0.5 1 1.5 2 2.5 3 Time (ns) 14

  11. 4 - Simulation methodology De fi ne simulation parameters 1 Laser beam diameter - Laser shot power Laser shot duration I transient (µA) Beam intensity (%) 100 5µm Rise 80 time Fall time 60 40 Peak value defined by (1) = I Ph_peak 20 0 7.5 5 7.5 2.5 5 0 2.5 0 2.5 t (ps) 2.5 5 5 7.5 0 7.5 Distance ( µ m) Distance ( µ m) Time at which the laser shot occurs w.r.t. the zero of the simulation 1 Volts CLK 0.5 0 I peak µA 0 0 0.5 1 1.5 2 2.5 3 Time (ns) (X, Y ) displacement step of the laser spot when one aims to draw a fault sensitivity map 70 Y axis (µm) 5µm 5µm 0 0 110 X axis (µm) 14

  12. 4 - Simulation methodology De fi ne simulation parameters 1 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog Set the (x,y) spatial location of the laser spot 3 De fi ne the amplitude of I Ppsub_nwell current 4 for each cell in the design according to Eq. 1 Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit Replace the nominal supply voltage 6 from the original netlist Add IPh current to each cell in the circuit 7 Perform electrical simulation 8 for a laser spot location (x,y) END 15

  13. 4 - Simulation methodology Cadence Voltus 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog ARM 7 - 5.21 k instances 15

  14. 4 - Simulation methodology Cadence Voltus 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog DFF ARM 7 - 5.21 k instances 15

  15. 4 - Simulation methodology Cadence Voltus 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog DFF 1V 1V ARM 7 - 5.21 k instances 15

  16. 4 - Simulation methodology De fi ne simulation parameters 1 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog Set the (x,y) spatial location of the laser spot 3 De fi ne the amplitude of I Ppsub_nwell current 4 for each cell in the design according to Eq. 1 Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit Replace the nominal supply voltage 6 from the original netlist Add IPh current to each cell in the circuit 7 Perform electrical simulation 8 for a laser spot location (x,y) END 16

  17. 4 - Simulation methodology Set the (x,y) spatial location of the laser spot 3 70 Beam intensity (%) Y axis (µm) 100 80 60 40 20 0 7.5 5 7.5 2.5 5 0 2.5 0 2.5 0 2.5 5 5 7.5 0 110 7.5 Distance ( µ m) Distance ( µ m) X axis (µm) 16

  18. 4 - Simulation methodology De fi ne simulation parameters 1 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog Set the (x,y) spatial location of the laser spot 3 De fi ne the amplitude of I Ppsub_nwell current 4 for each cell in the design according to Eq. 1 Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit Replace the nominal supply voltage 6 from the original netlist Add IPh current to each cell in the circuit 7 Perform electrical simulation 8 for a laser spot location (x,y) END 17

  19. 4 - Simulation methodology Power grid model PU I Ph De fi ne the amplitude of I Ppsub_nwell current 'X' 'Y' 4 I P psub_nwel for each cell in the design according to Eq. 1 I Ph C Load PD Power grid model Beam intensity (%) 100 80 60 40 20 0 7.5 5 7.5 2.5 5 0 2.5 2.5 0 2.5 5 5 7.5 7.5 Distance ( µ m) Distance ( µ m) 100% 85% 20% 5 μ m 5 μ m 1.2 μ m 17

  20. 4 - Simulation methodology Power grid model PU I Ph De fi ne the amplitude of I Ppsub_nwell current 'X' 'Y' 4 I P psub_nwel for each cell in the design according to Eq. 1 I Ph C Load PD Power grid model Beam intensity (%) 100 80 60 40 20 0 7.5 5 7.5 2.5 5 0 2.5 2.5 0 2.5 5 5 7.5 7.5 Distance ( µ m) Distance ( µ m) Z A 100% 85% 20% 5 μ m 5 μ m 1.2 μ m 17

  21. 4 - Simulation methodology Power grid model PU I Ph De fi ne the amplitude of I Ppsub_nwell current 'X' 'Y' 4 I P psub_nwel for each cell in the design according to Eq. 1 I Ph C Load PD Power grid model Beam intensity (%) 100 80 0.5 μ m 60 40 20 0 7.5 Nwell area: 0.30 μ m 2 Nwell 0.6 μ m 5 7.5 2.5 5 0 2.5 2.5 0 2.5 5 5 7.5 7.5 Distance ( µ m) Distance ( µ m) Z A 100% 85% 20% 5 μ m 5 μ m 1.2 μ m 17

  22. 4 - Simulation methodology Power grid model PU I Ph De fi ne the amplitude of I Ppsub_nwell current 'X' 'Y' 4 I P psub_nwel for each cell in the design according to Eq. 1 I Ph C Load PD Power grid model Beam intensity (%) 100 80 0.5 μ m 60 40 20 0 7.5 Nwell area: 0.30 μ m 2 Nwell 0.6 μ m 5 7.5 2.5 5 0 2.5 2.5 0 2.5 5 5 7.5 7.5 Distance ( µ m) Distance ( µ m) Z A 100% Drain NMOS Drain area: 0.03 μ m 2 85% 0.3 μ m 20% 0.1 μ m 5 μ m 5 μ m 1.2 μ m 17

  23. 4 - Simulation methodology Power grid model PU I Ph De fi ne the amplitude of I Ppsub_nwell current 'X' 'Y' 4 I P psub_nwel for each cell in the design according to Eq. 1 I Ph C Load PD Power grid model Beam intensity (%) 100 80 0.5 μ m 60 40 20 0 7.5 Nwell area: 0.30 μ m 2 Nwell 0.6 μ m 5 7.5 2.5 5 0 2.5 2.5 0 2.5 5 5 7.5 7.5 Distance ( µ m) Distance ( µ m) Z A 100% Drain NMOS Drain area: 0.03 μ m 2 85% 0.3 μ m 20% 0.1 μ m 5 μ m 5 μ m 0.30 μ m 2 1.2 μ m 10.00 0.03 μ m 2 17

  24. 4 - Simulation methodology Power grid model PU I Ph De fi ne the amplitude of I Ppsub_nwell current 'X' 'Y' 4 I P psub_nwel for each cell in the design according to Eq. 1 I Ph C Load PD Power grid model Beam intensity (%) 100 80 0.5 μ m 60 40 20 0 7.5 Nwell area: 0.30 μ m 2 Nwell 0.6 μ m 5 7.5 2.5 5 0 2.5 2.5 0 2.5 5 5 7.5 7.5 Distance ( µ m) Distance ( µ m) Z A 100% Drain NMOS Drain area: 0.03 μ m 2 85% 0.3 μ m 20% 0.1 μ m 5 μ m 5 μ m I transient (µA) 0.30 μ m 2 1.2 μ m 10.00 0.03 μ m 2 t (ps) 0 create_current_region -current {1.500ns 0.000mA 1.505ns 0.820mA 1.510ns 1.000mA 1.515ns 0.950mA ... 1.800ns 0.000mA} -layer M2 -intrinsic_cap C -loading_cap C -region "1.50 1.50 1.75 1.75" 17

  25. 4 - Simulation methodology De fi ne simulation parameters 1 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog Set the (x,y) spatial location of the laser spot 3 De fi ne the amplitude of I Ppsub_nwell current 4 for each cell in the design according to Eq. 1 Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit Replace the nominal supply voltage 6 from the original netlist Add IPh current to each cell in the circuit 7 Perform electrical simulation 8 for a laser spot location (x,y) END 18

  26. 4 - Simulation methodology Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit 70 Y axis (µm) Beam intensity (%) 100 0 80 0 110 60 X axis (µm) 40 20 0 7.5 5 7.5 2.5 5 0 2.5 2.5 0 2.5 5 5 7.5 7.5 Distance ( µ m) Distance ( µ m) 1 1 0.9 0.9 0.8 0.8 VDD and GND (V) Spot pos. 130 0.7 0.7 0.6 0.6 Voltage Swing 0.5 0.5 Voltage swing = 554 mV U205: 0.554 V 0.4 0.4 0.3 0.3 U1942: 0.554 V 0.2 0.2 U1088: 0.555 V 0.1 0.1 0 0 1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3 Time (ns) 18

  27. 4 - Simulation methodology Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit 70 70 Y axis (µm) Y axis (µm) Beam intensity (%) 100 0 0 80 0 110 0 110 60 X axis (µm) X axis (µm) 40 20 0 7.5 5 7.5 2.5 5 0 2.5 2.5 0 2.5 5 5 7.5 7.5 Distance ( µ m) Distance ( µ m) 1 1 0.9 0.9 0.8 0.8 VDD and GND (V) Spot pos. 130 Spot pos. 132 0.7 0.7 0.6 0.6 Voltage Swing Voltage Swing 0.5 0.5 Voltage swing = 554 mV U205: 0.554 V U205: 0.670 V 0.4 0.4 0.3 0.3 U1942: 0.554 V U1942: 0.677 V 0.2 0.2 U1088: 0.555 V U1088: 0.669 V 0.1 0.1 0 0 1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3 Time (ns) 18

  28. 4 - Simulation methodology Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit 70 70 70 Y axis (µm) Y axis (µm) Y axis (µm) Beam intensity (%) 100 0 0 0 80 0 110 0 110 0 110 60 X axis (µm) X axis (µm) X axis (µm) 40 20 0 7.5 5 7.5 2.5 5 0 2.5 2.5 0 2.5 5 5 7.5 7.5 Distance ( µ m) Distance ( µ m) 1 1 0.9 0.9 0.8 0.8 VDD and GND (V) Spot pos. 130 Spot pos. 132 Spot pos. 139 0.7 0.7 0.6 0.6 Voltage Swing Voltage Swing Voltage Swing 0.5 0.5 Voltage swing = 554 mV U205: 0.554 V U205: 0.670 V U205: 0.815 V 0.4 0.4 0.3 0.3 U1942: 0.554 V U1942: 0.677 V U1942: 0.818 V 0.2 0.2 U1088: 0.555 V U1088: 0.669 V U1088: 0.814 V 0.1 0.1 0 0 1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3 Time (ns) 18

  29. 4 - Simulation methodology De fi ne simulation parameters 1 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog Set the (x,y) spatial location of the laser spot 3 De fi ne the amplitude of I Ppsub_nwell current 4 for each cell in the design according to Eq. 1 Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit Replace the nominal supply voltage 6 from the original netlist Add IPh current to each cell in the circuit 7 Perform electrical simulation 8 for a laser spot location (x,y) END 19

  30. 4 - Simulation methodology Replace the nominal supply voltage 6 from the original netlist instance input output pwell nwell std cell U527 (net21866 n134 gnd! gnd! vdd! vdd!) STD_CELL_IVX8 (original) 19

  31. 4 - Simulation methodology Replace the nominal supply voltage 6 from the original netlist instance input output pwell nwell std cell U527 (net21866 n134 gnd! gnd! vdd! vdd!) STD_CELL_IVX8 (original) U527 (net21866 n134 GND_U527 GND_U527 VDD_U527 VDD_U527) STD_CELL_IVX8 1 1 Power-grid Model 0.9 0.9 0.8 0.8 VDD and GND (V) 0.7 0.7 0.6 0.6 >> '1' '1' '0' Voltage swing = 554 mV 0.5 0.5 I P psub_nwel 0.4 0.4 0.3 0.3 C Load 0.2 0.2 0.1 0.1 0 0 Power-grid Model 1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3 Time (ns) 19

  32. 4 - Simulation methodology Replace the nominal supply voltage 6 from the original netlist instance input output pwell nwell std cell U527 (net21866 n134 gnd! gnd! vdd! vdd!) STD_CELL_IVX8 (original) U527 (net21866 n134 GND_U527 GND_U527 VDD_U527 VDD_U527) STD_CELL_IVX8 VU527_VDD (vdd! VDD_U527) vsource type=pwl val0=0 wave=[ 1.5n 1 ... 1.65 0.78 ... tn vn ] 1 1 Power-grid Model 0.9 0.9 0.8 0.8 VDD and GND (V) 0.7 0.7 0.6 0.6 >> '1' '1' '0' Voltage swing = 554 mV 0.5 0.5 I P psub_nwel 0.4 0.4 0.3 0.3 C Load 0.2 0.2 0.1 0.1 0 0 Power-grid Model 1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3 Time (ns) 19

  33. 4 - Simulation methodology Replace the nominal supply voltage 6 from the original netlist instance input output pwell nwell std cell U527 (net21866 n134 gnd! gnd! vdd! vdd!) STD_CELL_IVX8 (original) U527 (net21866 n134 GND_U527 GND_U527 VDD_U527 VDD_U527) STD_CELL_IVX8 VU527_VDD (vdd! VDD_U527) vsource type=pwl val0=0 wave=[ 1.5n 1 ... 1.65 0.78 ... tn vn ] VU527_GND (GND_U527 gnd!) vsource type=pwl val0=0 wave=[ 1.5n 0 ... 1.68 0.23 ... tn vn ] 1 1 Power-grid Model 0.9 0.9 0.8 0.8 VDD and GND (V) 0.7 0.7 0.6 0.6 >> '1' '1' '0' Voltage swing = 554 mV 0.5 0.5 I P psub_nwel 0.4 0.4 0.3 0.3 C Load 0.2 0.2 0.1 0.1 0 0 Power-grid Model 1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3 Time (ns) 19

  34. 4 - Simulation methodology De fi ne simulation parameters 1 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog Set the (x,y) spatial location of the laser spot 3 De fi ne the amplitude of I Ppsub_nwell current 4 for each cell in the design according to Eq. 1 Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit Replace the nominal supply voltage 6 from the original netlist Add IPh current to each cell in the circuit 7 Perform electrical simulation 8 for a laser spot location (x,y) END 20

  35. 4 - Simulation methodology Add IPh current to each cell in the circuit 7 U527 (net21866 n134 gnd! gnd! vdd! vdd!) STD_CELL_IVX8 U527 (net21866 n134 GND_U527 GND_U527 VDD_U527 VDD_U527) STD_CELL_IVX8 VU527_VDD (vdd! VDD_U527) vsource type=pwl val0=0 wave=[ 1.5n 1 ... 1.65 0.78 ... tn vn ] VU527_GND (GND_U527 gnd!) vsource type=pwl val0=0 wave=[ 1.5n 0 ... 1.68 0.23 ... tn vn ] Power-grid Model >> '1' '1' '0' I P psub_nwel C Load Power-grid Model 20

  36. 4 - Simulation methodology Add IPh current to each cell in the circuit 7 U527 (net21866 n134 gnd! gnd! vdd! vdd!) STD_CELL_IVX8 U527 (net21866 n134 GND_U527 GND_U527 VDD_U527 VDD_U527) STD_CELL_IVX8 VU527_VDD (vdd! VDD_U527) vsource type=pwl val0=0 wave=[ 1.5n 1 ... 1.65 0.78 ... tn vn ] VU527_GND (GND_U527 gnd!) vsource type=pwl val0=0 wave=[ 1.5n 0 ... 1.68 0.23 ... tn vn ] IU527_VDD (VDD_U527 n134) isource dc=0 type=exp val0=0 td1=fstart Power-grid Model 1 Volts CLK I Ph 0.5 0 >> '1' '1' '0' I peak I P psub_nwel µA 0 C Load 0 0.5 1 1.5 2 2.5 3 Time (ns) Power-grid Model 20

  37. 4 - Simulation methodology Add IPh current to each cell in the circuit 7 U527 (net21866 n134 gnd! gnd! vdd! vdd!) STD_CELL_IVX8 U527 (net21866 n134 GND_U527 GND_U527 VDD_U527 VDD_U527) STD_CELL_IVX8 VU527_VDD (vdd! VDD_U527) vsource type=pwl val0=0 wave=[ 1.5n 1 ... 1.65 0.78 ... tn vn ] VU527_GND (GND_U527 gnd!) vsource type=pwl val0=0 wave=[ 1.5n 0 ... 1.68 0.23 ... tn vn ] IU527_VDD (VDD_U527 n134) isource dc=0 type=exp val0=0 td1=fstart tau1=rise_time Power-grid Model 1 Volts CLK I Ph 0.5 0 >> '1' '1' '0' I peak I P psub_nwel µA 0 C Load 0 0.5 1 1.5 2 2.5 3 Time (ns) Power-grid Model 20

  38. 4 - Simulation methodology Add IPh current to each cell in the circuit 7 U527 (net21866 n134 gnd! gnd! vdd! vdd!) STD_CELL_IVX8 U527 (net21866 n134 GND_U527 GND_U527 VDD_U527 VDD_U527) STD_CELL_IVX8 VU527_VDD (vdd! VDD_U527) vsource type=pwl val0=0 wave=[ 1.5n 1 ... 1.65 0.78 ... tn vn ] VU527_GND (GND_U527 gnd!) vsource type=pwl val0=0 wave=[ 1.5n 0 ... 1.68 0.23 ... tn vn ] IU527_VDD (VDD_U527 n134) isource dc=0 type=exp val0=0 td1=fstart tau1=rise_time val1=154.69u Power-grid Model 1 Volts CLK I Ph 0.5 0 >> '1' '1' '0' I peak I P psub_nwel µA 0 C Load 0 0.5 1 1.5 2 2.5 3 Time (ns) Power-grid Model 20

  39. 4 - Simulation methodology Add IPh current to each cell in the circuit 7 U527 (net21866 n134 gnd! gnd! vdd! vdd!) STD_CELL_IVX8 U527 (net21866 n134 GND_U527 GND_U527 VDD_U527 VDD_U527) STD_CELL_IVX8 VU527_VDD (vdd! VDD_U527) vsource type=pwl val0=0 wave=[ 1.5n 1 ... 1.65 0.78 ... tn vn ] VU527_GND (GND_U527 gnd!) vsource type=pwl val0=0 wave=[ 1.5n 0 ... 1.68 0.23 ... tn vn ] IU527_VDD (VDD_U527 n134) isource dc=0 type=exp val0=0 td1=fstart tau1=rise_time val1=154.69u td2=fall_start Power-grid Model 1 Volts CLK I Ph 0.5 0 >> '1' '1' '0' I peak I P psub_nwel µA 0 C Load 0 0.5 1 1.5 2 2.5 3 Time (ns) Power-grid Model 20

  40. 4 - Simulation methodology Add IPh current to each cell in the circuit 7 U527 (net21866 n134 gnd! gnd! vdd! vdd!) STD_CELL_IVX8 U527 (net21866 n134 GND_U527 GND_U527 VDD_U527 VDD_U527) STD_CELL_IVX8 VU527_VDD (vdd! VDD_U527) vsource type=pwl val0=0 wave=[ 1.5n 1 ... 1.65 0.78 ... tn vn ] VU527_GND (GND_U527 gnd!) vsource type=pwl val0=0 wave=[ 1.5n 0 ... 1.68 0.23 ... tn vn ] IU527_VDD (VDD_U527 n134) isource dc=0 type=exp val0=0 td1=fstart tau1=rise_time val1=154.69u td2=fall_start tau2=fall_time Power-grid Model 1 Volts CLK I Ph 0.5 0 >> '1' '1' '0' I peak I P psub_nwel µA 0 C Load 0 0.5 1 1.5 2 2.5 3 Time (ns) Power-grid Model 20

  41. 4 - Simulation methodology De fi ne simulation parameters 1 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog Set the (x,y) spatial location of the laser spot 3 De fi ne the amplitude of I Ppsub_nwell current 4 for each cell in the design according to Eq. 1 Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit Replace the nominal supply voltage 6 from the original netlist Add IPh current to each cell in the circuit 7 Perform an electrical simulation 8 for a laser spot location (x,y) END 21

  42. 4 - Simulation methodology Perform an electrical simulation 8 for a laser spot location (x,y) 70 60 50 40 μ m 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110 μ m 21

  43. 4 - Simulation methodology Perform an electrical simulation 8 for a laser spot location (x,y) 70 60 50 5 μ m 40 μ m 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110 μ m 21

  44. 4 - Simulation methodology Perform an electrical simulation 8 for a laser spot location (x,y) Power grid model Power grid model Power grid model PU I Ph PU I Ph PU I Ph ... ... 'X' 'Y' 'X' 'Y' 'X' 'Y' I P psub_nwel I P psub_nwel I P psub_nwel I Ph C Load I Ph C Load I Ph C Load PD PD PD Power grid model Power grid model Power grid model ... ... 70 70 Power grid model Power grid model 60 60 50 50 PU PU I Ph I Ph 5 μ m 5 μ m 40 40 'X' 'Y' 'X' 'Y' I P psub_nwel μ m μ m I P psub_nwel 30 30 I Ph C Load I Ph C Load PD PD 20 20 Power grid model Power grid model 10 10 0 0 0 0 10 10 20 20 30 30 40 40 50 50 60 60 70 70 80 80 90 100 110 90 100 110 μ m μ m ... ... Power grid model Power grid model Power grid model PU PU PU ... I Ph ... I Ph I Ph 'X' 'Y' 'X' 'Y' 'X' 'Y' I P psub_nwel I P psub_nwel I P psub_nwel C Load C Load I Ph C Load I Ph I Ph PD PD PD Power grid model Power grid model Power grid model 21

  45. 4 - Simulation methodology Perform an electrical simulation 8 for a laser spot location (x,y) option( ?categ 'turboOpts Power grid model Power grid model Power grid model 'numThreads ncpus_active PU I Ph PU I Ph PU I Ph ... ... 'mtOption "Manual" 'X' 'Y' 'X' 'Y' 'X' 'Y' I P psub_nwel I P psub_nwel I P psub_nwel 'apsplus t I Ph C Load I Ph C Load I Ph C Load PD PD PD 'digitalInstValue digital_inst_list Power grid model Power grid model Power grid model 'uniMode "XPS MS" ... ... ) 70 70 Hybrid simulation Power grid model Power grid model 60 60 50 50 PU PU I Ph I Ph 5 μ m 5 μ m 40 40 'X' 'Y' 'X' 'Y' I P psub_nwel μ m μ m I P psub_nwel 30 30 I Ph C Load I Ph C Load PD PD 20 20 Power grid model Power grid model 10 10 0 0 0 0 10 10 20 20 30 30 40 40 50 50 60 60 70 70 80 80 90 100 110 90 100 110 μ m μ m ... ... Power grid model Power grid model Power grid model PU PU PU ... I Ph ... I Ph I Ph 'X' 'Y' 'X' 'Y' 'X' 'Y' I P psub_nwel I P psub_nwel I P psub_nwel C Load C Load I Ph C Load I Ph I Ph PD PD PD Power grid model Power grid model Power grid model 21

  46. 4 - Simulation methodology Perform an electrical simulation 8 for a laser spot location (x,y) option( ?categ 'turboOpts Power grid model Power grid model Power grid model 'numThreads ncpus_active PU I Ph PU I Ph PU I Ph ... ... 'mtOption "Manual" 'X' 'Y' 'X' 'Y' 'X' 'Y' I P psub_nwel I P psub_nwel I P psub_nwel 'apsplus t I Ph C Load I Ph C Load I Ph C Load PD PD PD 'digitalInstValue digital_inst_list Power grid model Power grid model Power grid model 'uniMode "XPS MS" ... ... ) 70 70 Hybrid simulation Power grid model Power grid model 60 60 50 50 PU PU I Ph I Ph 5 μ m 5 μ m 40 40 'X' 'Y' 'X' 'Y' I P psub_nwel μ m μ m I P psub_nwel 30 30 I Ph C Load I Ph C Load PD PD 20 20 Number of instances simulated with the logic abstraction level Power grid model Power grid model 10 10 for different threshold voltages and different spot locations. 0 0 0 0 10 10 20 20 30 30 40 40 50 50 60 60 70 70 80 80 90 100 110 90 100 110 μ m μ m ... ... Threshold No. of cells No. of cells Power grid model Power grid model Power grid model ( IR drop + bounce) (spot loc.130) (spot loc.133) PU PU PU ... I Ph ... I Ph I Ph 5% 1676 1646 'X' 'Y' 'X' 'Y' 'X' 'Y' I P psub_nwel I P psub_nwel I P psub_nwel C Load C Load I Ph C Load I Ph I Ph PD PD PD 10% 4744 4866 Power grid model Power grid model Power grid model 15% 4878 5033 No. of instances: 5.21k 21

  47. 4 - Simulation methodology De fi ne simulation parameters 1 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog Set the (x,y) spatial location of the laser spot 3 De fi ne the amplitude of I Ppsub_nwell current 4 for each cell in the design according to Eq. 1 Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit Replace the nominal supply voltage 6 from the original netlist Add IPh current to each cell in the circuit 7 Perform electrical simulation 8 for a laser spot location (x,y) END 22

  48. 4 - Simulation methodology De fi ne simulation parameters 1 2 EMIR CAD T ool DEF SPEF LEF VCD SDC CPF GDS Timing Libs Spice Subckts Power Pads Verilog Set the (x,y) spatial location of the laser spot 3 De fi ne the amplitude of I Ppsub_nwell current 4 for each cell in the design according to Eq. 1 Perform IR drop analysis for a laser spot location (x,y) Save a table containing the evolution in time of the 5 supply voltage of each cell in the circuit Back to Step 3 Replace the nominal supply voltage 6 from the original netlist Add IPh current to each cell in the circuit 7 Perform electrical simulation 8 for a laser spot location (x,y) END 22

  49. Outline 1 Motivation 2 Classical model of laser fault injection and its limits 3 Proposed model 4 Simulation methodology 5 Simulation results 6 Conclusions

  50. Outline 1 Motivation 2 Classical model of laser fault injection and its limits 3 Proposed model 4 Simulation methodology 5 Simulation results 6 Conclusions

  51. 5 - Simulation Results 5.1 - Case study ARM 7 processor CMOS 28 nm VDD = 1 V 110 μ m x 70 μ m Laser spot diameter = 5 μ m 23

  52. 5 - Simulation Results 5.2 - Maximum Voltage Drop Without laser illumination mV 70 50 60 50 40 μ m 30 20 10 0 0 0 20 40 60 80 100 μ m 24

  53. 5 - Simulation Results 5.2 - Maximum Voltage Drop Without laser illumination With laser illumination mV mV 70 70 50 446 60 60 50 50 40 40 μ m μ m 30 30 20 20 10 10 0 0 0 0 0 20 40 60 80 100 0 20 40 60 80 100 μ m μ m 1 1 VDD and GND (V) 0.9 0.9 Without laser spot Without laser spot 0.8 0.8 5µm laser spot 0.7 0.7 0.6 0.6 Voltage swing = 554 mV 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 0 1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3 Time (ns) 24

Recommend


More recommend