stable and reproducible indium tin oxide platforms
play

Stable and Reproducible Indium Tin Oxide Platforms Susana - PowerPoint PPT Presentation

Electrochemical Detection of Salmonella via On-surface Isothermal Amplification of its Genetic Material onto Highly Stable and Reproducible Indium Tin Oxide Platforms Susana Barreda-Garca 1, *, Rebeca Miranda-Castro 1 , Noem


  1. Electrochemical Detection of Salmonella via On-surface Isothermal Amplification of its Genetic Material onto Highly Stable and Reproducible Indium Tin Oxide Platforms Susana Barreda-García 1, *, Rebeca Miranda-Castro 1 , Noemí de-los-Santos-Álvarez 1 and María Jesús Lobo Castañón 1 1 Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo. * Corresponding author: susanbarreda@gmail.com 1

  2. Electrochemical Detection of Salmonella via On-surface Isothermal Amplification of its Genetic Material onto Highly Stable and Reproducible Indium Tin Oxide Platforms Graphical Abstract [Original citation] - Reproduced by permission of The Royal Society of Chemistry 2

  3. Abstract: Salmonella represents one of the major causes of foodborne diseases in humans, in addition to provoke important economic losses in the agri-food sector worldwide. Therefore, the surveillance and control of this human pathogenic bacterium in foodstuffs and biological fluids are necessary in order to prevent and diagnose the disease. Traditional culture-based methods require 5 to 6 days to obtain a definitive result. As a faster alternative, herein we report the integration of a nucleic acid-based sensor and an isothermal DNA amplification technique, helicase-dependent amplification (HDA), onto indium tin oxide (ITO) surfaces for the electrochemical/optical detection of a DNA sequence specific for the typ A gene of Salmonella . DNA amplification process occurs at 65 ˚C with the reverse primer covalently bound to the ITO surface, whereas forward fluorescein-tagged primer is incorporated in solution. As a result of the isothermal elongation step, fluorescein-tagged DNA duplexes are attached to the ITO surface. Then, an anti-fluorescein-enzyme conjugate is incorporated for subsequent detection of the enzymatic product. This developed integrated sensing platform allows the detection of Salmonella down to 100 genomes in just over 2 hours [1] without need of high-end benchtop instrumentation. Furthermore, the sensing phase maintains its performance even after 9 months storage. [1] S. Barreda-García, R. Miranda-Castro, N. de-los-Santos-Álvarez, A.J. Miranda-Ordieres, M.J. Lobo-Castañón, Chem. Comm . 53 (2017) 9721-9724. Keywords: Salmonella; genetic material; helicase-dependent amplification 3

  4. Introduction Salmonella spp. pathogens constitutes one of the major causes of foodborne diseases in humans worldwide. 4

  5. Introduction The surveillance and control of this human pathogenic bacterium in foodstuffs and biological fluids are necessary in order to prevent and diagnose the disease. Food Safety Clinical Diagnosing 5

  6. Introduction Traditional microbiological methods for Salmonella detection in food require 5 to 6 working days to obtain a positive result Decentralized genetic testing Detection Hybridization Amplification Isothermal nucleic acid amplification + sensing phase thermally stable 6

  7. Introduction HELICASE DEPENDENT AMPLIFICATION (HDA) 5’ 3’ 3’ 5’ Step 1 Helicase 5’ 3’ DNA polymerase 5’ 3’ Step 2 65 °C SSB protein 5’ 3’ Reverse primer Forward primer 5’ 3’ Step 3 5’ 3’ 3’ 5’ Biosens. Bieolectron. 68 (2015) 122-128 HDA + electrochemical detection Anal.Chem. 87 (2015) 8547-8554 matches real-time PCR Anal. Bioanal. Chem. 408 (2016) 8603-8610 7

  8. Introduction Objective To develop a simple and robust platform for the quantification of DNA sequences specific of Salmonella by integrating on-surface HDA and electrochemical detection at indium-tin oxide (ITO) surfaces Optimizing the sensing phase formation and the hybridization assay Evaluating the genosensor response and stability Integrating on-surface HDA and electrochemical detection 8

  9. ITO modification with oligonucleotides 1% APTES overnight 1. (3-aminopropyl)triethoxysilane (APTES) 2. Sulfosuccinimidyl 4-(N-maleimidemethyl)cyclohexane-1-carboxylate 3. Thiolated DNA capture probe (25 mer) [Original citation] - Reproduced by permission of The Royal Society of Chemistry 9

  10. ITO modification with oligonucleotides Quantification 1% APTES of Active Sites overnight Cyclic voltammetry after linking 6-(ferrocenyl)hexanethiol Γ active = 1.7×10 14 molecules/cm 2 sites 1. (3-aminopropyl)triethoxysilane (APTES) 2. Sulfosuccinimidyl 4-(N-maleimidemethyl)cyclohexane-1-carboxylate 3. Thiolated DNA capture probe (25 mer) [Original citation] - Reproduced by permission of The Royal Society of Chemistry 10

  11. ITO modification with oligonucleotides Quantification 1% APTES of bound ssDNA overnight Chronocoulometry after 3+ interacting with Ru(NH 3 ) 6 Γ ssDNA = 2.5×10 12 molecules/cm 2 1. (3-aminopropyl)triethoxysilane (APTES) 2. Sulfosuccinimidyl 4-(N-maleimidemethyl)cyclohexane-1-carboxylate 3. Thiolated DNA capture probe (25 mer) [Original citation] - Reproduced by permission of The Royal Society of Chemistry 11

  12. ITO modification with oligonucleotides 1% APTES Γ active = 1.7×10 14 molecules/cm 2 overnight sites 1.5 % Γ ssDNA = 2.5×10 12 molecules/cm 2 Medium surface density Adequate DNA spacing for hybridization 1. (3-aminopropyl)triethoxysilane (APTES) 2. Sulfosuccinimidyl 4-(N-maleimidemethyl)cyclohexane-1-carboxylate 3. Thiolated DNA capture probe (25 mer) [Original citation] - Reproduced by permission of The Royal Society of Chemistry 12

  13. Genosensor for Salmonella Fluorescence Spectroscopy Hybridization efficiency: 50% 13

  14. Genosensor for Salmonella Voltammograms Sensor Response to the Concentration of Salmonella 0,8 800 250 nM 0,7 700 100 nM y = 2,7082x + 43,6 0,6 600 R² = 0,9989 25 nM 0,5 500 inet / nA 12.5 nM i / µA 0,4 400 5 nM 0,3 300 0 nM 0,2 200 0,1 100 0 0 0 0,2 0,4 0,6 0,8 0 100 200 300 E / V vs Ag/AgCl [ Salmonella DNA] / nM LOD : 2.5 nM Linear range: 5 to 250 nM Reproducibility: 10 % (5 nM) 14

  15. Genosensor stability Storage Stability Thermal Stability Operational Conditions Dry / 4 ˚C 200 i / nA 2.5% (BSA + Glucose) 25 ºC 100 65 ºC 14 0 Blank S: 25 nM 0 0,4 0,8 12 E / V 10 30 8 S: 100 nM S/B 25 6 20 4 S/B 15 2 10 0 0 1 120 180 270 5 Days 0 25° C 65° C [Original citation] - Reproduced by permission of The Royal Society of Chemistry 15

  16. On-surface HDA amplification Function Name Sequence (5’→3’) Forward primer 6-FAM-FP 2 6-FAM-GGT CTG CTG TAC TCC ACC TTC AGC Reverse Primer RP TTG GAG ATC AGT ACG CCG TTC T (solution) Reverse primer HS-T 10 -RP 2 HS-C6-(T) 10 TTG GAG ATC AGT ACG CCG TTC TGA CGC T (immobilized) [Original citation] - Reproduced by permission of The Royal Society of Chemistry 16

  17. On-surface HDA amplification RP depletion 2. Elongation of anchored RP using as 1. Asymmetric genome amplification in solution target 6-FAM-shortened amplicons Salmonella helicase polymerase SSB protein genome 6-FAM-FP 2 HS-T 10 -RP 2 RP 86bp 6-FAM-amplicon [Original citation] - Reproduced by permission of The Royal Society of Chemistry 17

  18. On-surface HDA amplification optimization Asymmetry Ratio Minimizing non-specific amplification for primers in solution 2000 Blank 10 4 GU 1500 FP: 75 nM i / nA RP: lower amount 1000 On-surface amplification for 90 min 500 0 1:8 1:15 Primer asymmetry ratio RP:FP 18

  19. On-surface HDA amplification optimization Amplification time 5 B: Blank 4 S: 10 4 GU RP:FP / 1:15 3 S/B FP: 75 nM 2 RP: 5 nM 1 0 75 90 Amplification time / min 19

  20. Analytical performance LOD real-time PCR = 100 GU Electrochemical Detection 1,2 1-Naphthyl AP 1 phosphate 1,0 i / µA 0,5 Normalized i net 0,8 1-Naphtol 0 0 0,4 0,8 0,6 E / V 0,4 DPV 0,2 Reference electrode Counter electrode Liquid ITO 0,0 junction 1,0E+00 1,0E+01 1,0E+02 1,0E+03 1,0E+04 1,0E+05 1,0E+06 1 10 10 2 10 3 10 4 10 5 10 6 Salmonella /GU Polycarbonate LOD = 10 GU wells Cu tape RSD = 20 % Glass-ITO [Original citation] - Reproduced by permission of The Royal Society of Chemistry 20

  21. Analytical performance Homogeneous amplification + genosensor On-surface amplification 45 times higher slope  Highest efficiency 25 1.2 20 j ( μA cm -2 ) j ( μA cm -2 ) 15 0.8 10 0.4 5 0 0 1 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5 3 3.5 4 Log ( Salmonella , GU) Log ( Salmonella , GU) j ( μA cm -2 ) = 0.32 Log ( Salmonella, GU) – 0.12 j ( μA cm -2 ) = 14.45 Log ( Salmonella, GU) - 24 R 2 = 0.991 R 2 = 0.991 [Original citation] - Reproduced by permission of The Royal Society of Chemistry 21

  22. Analytical performance Homogeneous amplification + genosensor On-surface amplification Reduction of non-specific But … amplification  Better detectability than real-time PCR 25 1.2 20 j ( μA cm -2 ) j ( μA cm -2 ) 15 0.8 10 0.4 5 0 0 1 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5 3 3.5 4 Log ( Salmonella , GU) Log ( Salmonella , GU) j ( μA cm -2 ) = 0.32 Log ( Salmonella, GU) – 0.12 j ( μA cm -2 ) = 14.45 Log ( Salmonella, GU) - 24 R 2 = 0.991 R 2 = 0.991 [Original citation] - Reproduced by permission of The Royal Society of Chemistry 22

Recommend


More recommend