spatial extremes analyses in climate studies
play

Spatial Extremes Analyses in Climate Studies P. Naveau Laboratoire - PowerPoint PPT Presentation

Spatial Extremes Analyses in Climate Studies P. Naveau Laboratoire des Sciences du Climat et de lEnvironnement IPSL, CNRS, France D. Cooley Applied Math Dept, Colorado University USA P. Poncet Universit e Paris X, France


  1. Spatial Extremes Analyses in Climate Studies • P. Naveau Laboratoire des Sciences du Climat et de l’Environnement IPSL, CNRS, France • D. Cooley Applied Math Dept, Colorado University USA • P. Poncet Universit´ e Paris X, France naveau@lsce.cnrs-gif.fr ⇓ ↓ ↑ ⇑

  2. Outline of the Talk 1. Motivations 2. Maxima distribution 3. Extremal coefficient 4. Geostatistics 5. Conclusions naveau@lsce.cnrs-gif.fr 2 ⇓ ↓ ↑ ⇑

  3. Climate Studies Motivations Max Coeff Geostat End 3 ⇓ ↓ ↑ ⇑

  4. Climate Studies General statistical difficulties (but also true for extremes) Spatial component : e.g. El-Nino Temporal component : e.g. solar forcing Non-stationary : e.g. release of CO 2 Driven by physical processes : e.g. heat equations Multivariate variables : winds, precipitation, temperatures Motivations Max Coeff Geostat End 3 ⇓ ↓ ↑ ⇑

  5. Climate Studies General statistical difficulties (but also true for extremes) Spatial component : e.g. El-Nino Temporal component : e.g. solar forcing Non-stationary : e.g. release of CO 2 Driven by physical processes : e.g. heat equations Multivariate variables : winds, precipitation, temperatures Motivations Max Coeff Geostat End 3 ⇓ ↓ ↑ ⇑

  6. Spatial Statistics for Extremes 500 19500 How to describe the 400 spatial dependence as 19000 300 a function of the 200 distance between two 18500 100 points? 5500 6000 6500 7000 7500 Motivations Max Coeff Geostat End 4 ⇓ ↓ ↑ ⇑

  7. Our Data: Daily precipitation Motivations Max Coeff Geostat End 5 ⇓ ↓ ↑ ⇑

  8. Our Data: Daily precipitation Dijon’s mustard region!! Motivations Max Coeff Geostat End 6 ⇓ ↓ ↑ ⇑

  9. Our Data: Daily precipitation 500 19500 400 Maxima over 1970-2004 Data homogenized 19000 300 by O. Mestre Cˆ ote d’Or, Bourgogne France 200 83 locations 18500 100 5500 6000 6500 7000 7500 Motivations Max Coeff Geostat End 7 ⇓ ↓ ↑ ⇑

  10. Spatial Statistics for Extremes A few approaches for modeling spatial extremes Max-stable processes : Adapting asymptotic results for multivariate ex- tremes Schlather & Tawn (2003), Naveau et al. (2005), de Haan & Pereira (2005) Bayesian or latent models : spatial structure indirectly modeled via the EVT parameters distribution Coles & Tawn (1996), Cooley et al. (2005) Linear filtering : Auto-Regressive spatio-temporal heavy tailed processes, Davis and Mikosch (2005) Gaussian anamorphosis : Transforming the field into a Gaussian one Wackernagel (2003) Motivations Max Coeff Geostat End 8 ⇓ ↓ ↑ ⇑

  11. Assumptions Suppose we know the marginal distributions of maxima M ( x ) with M ( x ) = the maximum recorded at the location x from a stationary field. Without loss of generality, we assume that the margins follow an unit Fr´ echet F ( u ) = P [ M ( x ) ≤ u ] = exp( − 1 /u ) Motiv Maxima distribution Coeff Geostat End 9 ⇓ ↓ ↑ ⇑

  12. Assumptions Suppose we know the marginal distributions of maxima M ( x ) with M ( x ) = the maximum recorded at the location x from a stationary field. Without loss of generality, we assume that the margins follow an unit Fr´ echet F ( u ) = P [ M ( x ) ≤ u ] = exp( − 1 /u ) P [ M ( x ) < u 1 , M ( x + h ) < u 2 ] = ?? Motiv Maxima distribution Coeff Geostat End 9 ⇓ ↓ ↑ ⇑

  13. Bivariate case ( M ( x ) , M ( x + h )) A well-known non-parametric structure � � � � � g ( s, 0) , g ( s, h ) P [ M ( x ) < u 1 , M ( x + h ) < u 2 ] = exp max δ ( ds ) − u 1 u 2 Motiv Maxima distribution Coeff Geostat End 10 ⇓ ↓ ↑ ⇑

  14. Bivariate case ( M ( x ) , M ( x + h )) A well-known non-parametric structure � � � � � g ( s, 0) , g ( s, h ) P [ M ( x ) < u 1 , M ( x + h ) < u 2 ] = exp max δ ( ds ) − u 1 u 2 Special case u 1 = u 2 = u P [ M ( x ) < u, M ( x + h ) < u ] = exp( − θ ( h ) /u ) = F ( u ) θ ( h ) , with F ( u ) = e − 1 /u Motiv Maxima distribution Coeff Geostat End 10 ⇓ ↓ ↑ ⇑

  15. θ ( h ) = Extremal coefficient P [ M ( x ) < u, M ( x + h ) < u ] = F ( u ) θ ( h ) with F ( u ) = P [ M ( x ) < u ] = P [ M ( x + h ) < u ] Motiv Max Extremal coefficient Geostat End 11 ⇓ ↓ ↑ ⇑

  16. θ ( h ) = Extremal coefficient P [ M ( x ) < u, M ( x + h ) < u ] = F ( u ) θ ( h ) with F ( u ) = P [ M ( x ) < u ] = P [ M ( x + h ) < u ] Interpretation Independence ⇒ θ ( h ) = 2 M ( x ) = M ( x + h ) ⇒ θ ( h ) = 1 Do not completely characterize the full bivariate dependence structure Motiv Max Extremal coefficient Geostat End 11 ⇓ ↓ ↑ ⇑

  17. Geostatistics: Variograms 2 E | Z ( x + h ) − Z ( x ) | 2 if { Z ( x ) } stationary field s.t. E | Z ( x ) | 2 < ∞ γ ( h ) = 1 ● ● 1.0 Finite if light tails ● ● ● ● 0.8 Capture all spatial ● semivariance 0.6 ● ● ● structure if { Z ( x ) } ● 0.4 Gaussian fields ● 0.2 ● but not well adapted 0.0 for extremes 0.0 0.2 0.4 0.6 0.8 distance Motiv Max Coeff Geostatistics End 12 ⇓ ↓ ↑ ⇑

  18. A Different Variogram 1 E | M ( x + h ) − M ( x ) | 2 =??? 2 where { M ( x ) } stationary max-stable field with unit-Fr´ echet margins Motiv Max Coeff Geostatistics End 13 ⇓ ↓ ↑ ⇑

  19. A Different Variogram 1 E | M ( x + h ) − M ( x ) | 2 =??? 2 where { M ( x ) } stationary max-stable field with unit-Fr´ echet margins M ( x ) unit-Fr´ echet ⇒ E M ( x ) = ∞ E | M ( x + h ) − M ( x ) | 2 not finite Motiv Max Coeff Geostatistics End 13 ⇓ ↓ ↑ ⇑

  20. A Different Variogram | F ( M ( x + h )) − F ( M ( x )) | with F ( u ) = exp( − 1 /u ) Motiv Max Coeff Geostatistics End 14 ⇓ ↓ ↑ ⇑

  21. A Different Variogram ν ( h ) = 1 E | F ( M ( x + h )) − F ( M ( x )) | 2 with F ( u ) = exp( − 1 /u ) Defined for light & heavy tails Called a Madogram Nice links with extreme value theory Motiv Max Coeff Geostatistics End 15 ⇓ ↓ ↑ ⇑

  22. A Different Variogram ν ( h ) = 1 2 E | F ( M ( x + h )) − F ( M ( x )) | Why does it work? Motiv Max Coeff Geostatistics End 16 ⇓ ↓ ↑ ⇑

  23. A Different Variogram ν ( h ) = 1 2 E | F ( M ( x + h )) − F ( M ( x )) | Why does it work? 1 2 | a − b | = max( a, b ) − 1 2( a + b ) Motiv Max Coeff Geostatistics End 16 ⇓ ↓ ↑ ⇑

  24. A Different Variogram ν ( h ) = 1 2 E | F ( M ( x + h )) − F ( M ( x )) | Why does it work? 2 | a − b | = max( a, b ) − 1 1 2( a + b ) a = F ( M ( x + h )) and b = F ( M ( x )) E a = E b = 1 / 2 θ ( h ) E max( a, b ) = E F (max( M ( x + h ) , M ( x ) )) = 1 + θ ( h ) � �� � max-stable Motiv Max Coeff Geostatistics End 16 ⇓ ↓ ↑ ⇑

  25. Madogram ν ( h ) ⇒ Extremal coeff θ ( h ) θ ( h ) = 1 + 2 ν ( h ) 1 − 2 ν ( h ) The madogram ν ( h ) gives the extremal coefficient θ ( h ) Motiv Max Coeff Geostatistics End 17 ⇓ ↓ ↑ ⇑

  26. Madogram ν ( h ) ⇒ Extremal coeff θ ( h ) θ ( h ) = 1 + 2 ν ( h ) 1 − 2 ν ( h ) The madogram ν ( h ) gives the extremal coefficient θ ( h ) The madogram ν ( h ) = 1 2 E | F ( M ( x + h )) − F ( M ( x )) | is easy to estimate: ν ( h ) = 1 � � � � � ˆ � F ( M ( x i ) − F ( M ( x j )) � N h || x i − x j || = h Motiv Max Coeff Geostatistics End 17 ⇓ ↓ ↑ ⇑

  27. Schlather’s models (2003) 40 3 30 2 1 y 20 0 10 −1 10 20 30 40 x � 1 − 1 θ ( h ) = 1 + 2 (exp( − h/ 40) + 1) Motiv Max Coeff Geostatistics End 18 ⇓ ↓ ↑ ⇑

  28. Madogram ν ( h ) ⇒ Extremal coeff θ ( h ) Schlather’s fields Madogram Extremal coeff 0.8 2.0 ● ● ● ● ● ● ● ● ● 1.8 ● ● 0.6 ● estimated madogram ● 1.6 ● ● thetaHat 0.4 ● ● ● ● ● 1.4 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0.2 ● ● ● ● 1.2 ● ● ● ● ● ● ● 0.0 1.0 1 4 6 8 10 12 14 16 18 20 1 4 6 8 10 12 14 16 18 20 distance distance Motiv Max Coeff Geostatistics End 19 ⇓ ↓ ↑ ⇑

  29. Precipitation Histogram Madogram 1.5 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 0.15 ● ● ● ● ● ● 1.0 ● madogram 0.10 Density ● 0.5 0.05 0.00 0.0 0.0 0.2 0.4 0.6 0.8 1.0 0 200 400 600 800 1000 1200 1400 normalized data distance Motiv Max Coeff Geostatistics End 20 ⇓ ↓ ↑ ⇑

  30. Building valid θ ( h ) Proposition A Any extremal coefficient function θ ( h ) is such that 2 − θ ( h ) is positive semi-definite. Motiv Max Coeff Geostatistics End 21 ⇓ ↓ ↑ ⇑

  31. Building valid θ ( h ) Proposition A Any extremal coefficient function θ ( h ) is such that 2 − θ ( h ) is positive semi-definite. Proposition B Any extremal coefficient function θ ( h ) satisfies the following inequalities θ ( h + k ) ≤ θ ( h ) θ ( k ) , θ ( h ) τ + θ ( k ) τ − 1, for all 0 ≤ τ ≤ 1 , θ ( h + k ) τ ≤ θ ( h ) τ + θ ( k ) τ − 1, for all τ ≤ 0 . θ ( h + k ) τ ≥ Motiv Max Coeff Geostatistics End 21 ⇓ ↓ ↑ ⇑

  32. Complete bivariate structure Special case u 1 = u 2 = u P [ M ( x ) < u, M ( x + h ) < u ] = exp( − θ ( h ) /u ) Motiv Max Coeff Geostatistics End 22 ⇓ ↓ ↑ ⇑

Recommend


More recommend