spatial coupling algorithm and proof technique
play

Spatial coupling: Algorithm and Proof Technique Workshop on Local - PowerPoint PPT Presentation

Spatial coupling: Algorithm and Proof Technique Workshop on Local Algorithms - WOLA 2018 Boston, June 15th, 2018 1 Physics inspiration: nucleation, crystallization, meta-stability 2 Supercooled water Heat packs Sodium acetate , C 2 H 3 NaO 2


  1. Spatial coupling: Algorithm and Proof Technique Workshop on Local Algorithms - WOLA 2018 Boston, June 15th, 2018 1

  2. Physics inspiration: nucleation, crystallization, meta-stability 2

  3. Supercooled water

  4. Heat packs Sodium acetate , C 2 H 3 NaO 2 ,

  5. Nucleation

  6. Spatial-Coupling as an Algorithm 6

  7. Introduction - Graphical Codes Low-density Parity-Check (LDPC) Codes d l (= 3) d r (= 6) x 1 c 1 x 6 + x 7 + x 10 + x 20 = 0 x 2 x 3 c 2 x 4 x 5 c 3 rate ≥ r design = #variables − #checks = 20 − 10 = 1 x 6 #variables 20 2 x 7 c 4 x 8 x 9 c 5 rate ∼ r design x 10 x 11 c 6 x 12 x 13 c 7 variable check x 14 x 15 nodes nodes c 8 x 16 x 17 c 9 x 18 x 19 c 10 x 20 x 4 + x 9 + x 13 + x 14 + x 20 = 0

  8. Ensemble of Codes - Configuration Construction (3, 6) ensemble 1 2 1 3 2 3 4 4 5 5 6 6 7 8 7 9 8 10 9 11 12 10 11 12 each configuration code is sampled u.a.r. has uniform from the ensemble probability and used for transmission

  9. BP Decoder - BEC 0 0 0 ? 0=0 0= 0 ? 0 ? decoded ? ? 0+?= 0+?=? ? ? ? ? ?

  10. How does BP perform on the BEC? x 0.4 0.5 0.6 0.7 0.8 0.9 1.0 P error 1.0 0.8 0.6 0.4 0.3 0.2 0.2 0.1 0.0 eps 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 (3, 6) ensemble

  11. Asymptotic Analysis - Density Evolution (DE) y d l − 1 1 − (1 − x ) d r − 1 � ? ? � channel erasure fraction ? ? ? ? ? ? y y y x x x one iteration one iteration of BP at variable of BP at check node node

  12. Asymptotic Analysis - Density Evolution (DE) erasure fraction at the root after iterations � x ( ` ) = ✏ ( y ( ` ) ) d l − 1 y ( ` ) = 1 − (1 − x ( ` − 1) ) d r − 1 x ( ` =2) = ✏ ( y ( ` =2) ) d l − 1 y ( ` =2) = 1 − (1 − x ( ` =1) ) d r − 1 x ( ` =1) = ✏ ( y ( ` =1) ) d l − 1 y ( ` =1) = 1 − (1 − x ( ` =0) ) d r − 1 x ( ` =0) = ✏

  13. Asymptotic Analysis - Density Evolution (DE) f ( ✏ , x ) = ✏ (1 − (1 − x ) d r − 1 ) d l − 1 f ( ✏, x ) is increasing in both its arguments x ( ` ) ≤ x ( ` − 1) x ( ` +1) = f ( ✏, x ( ` ) ) f ( ✏, x ( ` − 1) ) = x ( ` ) ≤ x (1) = f ( ✏, x (0) = 1) = ✏ ≤ x (0) = 1 Note: DE sequence is decreasing and bounded from below ⇒ converges

  14. EXIT Curve for (3, 6) Ensemble x x x x x x x x x 1.0 EXIT 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 EXIT value as a 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 function of increasing iterations for a given channel value 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 eps eps eps eps eps eps eps eps eps 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

  15. A look back ... x 0.4 0.5 0.6 0.7 0.8 0.9 1.0 P error 1.0 EXIT 0.8 0.6 0.4 0.3 0.2 0.2 0.1 0.0 eps 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 (3, 6) ensemble

  16. BP decoder ends up in meta-stable state. Optimal (MAP) decoder would reach stable state. Can we use nucleation? 16

  17. The Spatially Coupled Ensemble

  18. The Spatially Coupled Ensemble

  19. (d l , d r , w, L) (d l , d r , w, L) (d l , d r , w, L) M w L

  20. DE for Coupled Ensemble ✏ MAP ✏ BP �

  21. DE for Coupled Ensemble ✏ MAP ✏ BP �

  22. DE for Coupled Ensemble ✏ MAP ✏ BP �

  23. Thresholds capacity 1/2 BEC BAWGNC BSC (3, 6) 0.488 0.48 0.468 (4, 8) 0.498 0.496 0.491 (5, 10) 0.499 0.499 0.497 (6, 12) 0.4999 0.4996 0.499

  24. Back to the Physics Interpretation Krzakala, Mezard, Sausset, Sun, and Zdeborova metastability and nucleation

  25. Spatially Coupled Ensembles — Summary • achieve capacity for any BMS channel • block length: O (1 / δ 3 ) • encoding complexity per bit: O (log(1 / δ )) • number of iterations: O (1 / δ ) (educated guess :-)) • number of bits required for processing of messages: O (log(1 / δ )) • decoding complexity per bit: O (1 / δ log 2 (1 / δ )) bit operations

  26. Main Message Coupled ensembles under BP decoding behave like uncoupled ensembles under MAP decoding. Since coupled ensemble achieve the highest threshold they can achieve (namely the MAP threshold) under BP we speak of the threshold saturation phenomenon. Via spatial coupling we can construct codes which are capacity-achieving universally across the whole set of BMS channels. On the downside, due to the termination which is required, we loose in rate. We hence have to take the chain length large enough in order to amortize this rate loss. Therefore, the blocklength has to be reasonably large.

  27. Spatial Coupling as a Proof Technique (coding) shows that MAP threshold is given by Maxwell conjecture

  28. Spatial Coupling as a Proof Technique 30

  29. Paradigmatic CSP: random K -SAT I Random graph with n variable nodes and m clauses. I Each variable node is connected to K clauses u.a.r by an edge. I Edge is dashed or full with probability 1 / 2. Degree of variable nodes is Poisson ( ↵ K ) . I Boolean variables: x i ∈ { T , F } or ∈ { 0 , 1 } , i = 1 , · · · , n i = 1 x n ( a i ) ∨ K I Clauses: � � , a i a = 1 , · · · , m i = 1 x s ( a i ) I F n , α , K = ∧ M ∨ K � � a i a = 1 #( clauses ) #( variables ) = m Control parameter ↵ = n : Phase Transitions. Based on joint work with D. Achlioptas (UCSD), H. Hassani (UPenn), and Nicolas Macris (EPFL) 31

  30. I Friedgut 1999: ∃ ↵ s ( n , K ) s.t ∀ ✏ > 0 ⇢ 1 if ↵ < ( 1 − ✏ ) ↵ s ( n , K ) , � lim F n , α , K is SAT = n →∞ Pr if ↵ > ( 1 − ✏ ) ↵ s ( n , K ) . 0 Existence of lim n → + ∞ ↵ s ( n , K ) is still an open problem. I This talk: MAX-SAT or Hamiltonian version of the problem: m X � � �� i = 1 x s ( a i ) ∨ K H F ( x ) = 1 − 1 , a i a = 1 the MAX-SAT/UNSAT threshold is defined as: 1 � ↵ s ( K ) ≡ inf ↵ | lim n E [ min H F ( x )] > 0 n → + ∞ x | {z } exists and continuous function of α In particular ↵ s exists. [Interpolation methods: Franz-Leone, Panchenko, Gamarnik-Bayati-Tetali] . 32

  31. The Physics Picture Parisi-Mezard-Zechina 2001 Semerjian-RicciTersenghi-Montanari, Krazkala-Zdeborova 2008

  32. Known Lower bounds on the SAT-UNSAT threshold I Algorithmic lower bounds: find analyzable algorithm and find solutions for ↵ alg ( K ) < ↵ s ( K ) . [long history ...] I Second Moment lower bounds, weighted s.m with cavity inspired weights [long history, ... Achlioptas - Coja Oghlan] . K 3 4 large K · · · 2 K ln 2 − 3 3 . 52 alg 7 . 91 s . m 2 ln 2 + o ( 1 ) s . m best lower bound · · · 2 K ln K 3 . 52 5 . 54 ( 1 + o ( 1 )) best algor bound · · · K 2 K ln K 3 . 86 9 . 38 ( 1 + o ( 1 )) α dyn · · · K 2 K ln 2 − 3 2 ln 2 + o ( 1 ) 3 . 86 9 . 55 α cond · · · 2 K ln 2 − 1 4 . 26 9 . 93 2 ( 1 + ln 2 ) + o ( 1 ) α s · · · 34

  33. New Lower bounds by the Spatial Coupling Method Recall: H F ( x ) = number of UNSAT clauses of F for x ∈ { 0 , 1 } n � ↵ | lim n → + ∞ 1 and ↵ s = inf n E [ min x H F ( x )] > 0 K 3 4 large K · · · 2 K × 1 3 . 67 7 . 81 α new · · · 2 2 K ln K 3 . 52 5 . 54 ( 1 + o ( 1 )) best algor bound · · · K 2 K ln 2 − 3 3 . 52 alg 7 . 91 s . m 2 ln 2 + o ( 1 ) s . m best lower bound · · · 2 K ln K 3 . 86 9 . 38 ( 1 + o ( 1 ) α dyn · · · K 2 K ln 2 − 3 3 . 86 9 . 55 2 ln 2 + o ( 1 ) α cond · · · 2 K ln 2 − 1 4 . 26 9 . 93 2 ( 1 + ln 2 ) + o ( 1 ) α s · · · 35

  34. Strategy construct spatially coupled model α coupled = α uncoupled SAT SAT ≤ α (un)coupled α uncoupled ≤ α coupled SAT alg alg

  35. Unit Clause Propagation algorithm 1. Repeat until all variables are set: 2. Forced Step: If F contains unit clauses choose one at random and satisfy it by setting unique variable. Remove or shorten unit clause other clauses that contain this variable. 3. Free Step: If there are no unit clauses choose a variable at random and set it at random. Remove or shorten clauses that contain this variable. 37

  36. Analysis by differential equations [Chao-Franco 1986] A "Round" = "free step immediately followed by forced steps and ends when all forced steps have ended". (Rescaled) time t is number of rounds. For K = 3: d ` ( t ) 8 = − 2 � ( t ) , � ( t ) = #( variables set in a round ) dt > > ✓ ◆ > dc 3 ( t ) 3 c 3 ( t ) > = − � ( t ) < dt ` ( t ) / 2 ✓ ◆ ✓ ◆ > > dc 2 ( t ) 3 c 3 ( t ) 2 c 2 ( t ) 1 = + � ( t ) 2 − � ( t ) > > dt ` ( t ) / 2 ` ( t ) / 2 : d ` ( t ) 2 1 = − = − → 4 ( 1 − ` ( t ) dt 1 − r 1 ( t ) ` ( t )( 1 − 3 ↵ 2 ) 3 ≈ 2 . 66, d ` ( t ) For ↵ → 8 → + ∞ and rate r 1 ( t ) of unit clauses dt ⇒ ↵ UC ( 3 ) = 8 production → 1; = 3 ≈ 2 . 66. 38

Recommend


More recommend