solar cycle variation of oscillation frequencies and
play

Solar-cycle variation of oscillation frequencies and surface - PowerPoint PPT Presentation

Solar-cycle variation of oscillation frequencies and surface magnetic field Shao Min Tan Carleton College Mentors: Michael Thompson, Rebecca Centeno-Elliot (HAO) Pulsating Stars Image credit: European Science Agency,


  1. Solar-cycle variation of oscillation frequencies and surface magnetic field Shao Min Tan Carleton College Mentors: Michael Thompson, Rebecca Centeno-Elliot (HAO)

  2. Pulsating Stars Image credit: European Science Agency, http://sci.esa.int/science-e- media/img/20/cepheid-variables.jpg • Cepheid variables • Standard candle

  3. Closer to Home… -2000 2000 -2000 2000 Velocity (m/s) Velocity (m/s) Image credit: Christensen-Dalsgaard, 2002 [1]

  4. Instruments • Michelson Doppler Interferometer (MDI) on SOHO spacecraft • Global Oscillation Network Group (GONG) Image credit: GONG, http://gong.nso.edu/

  5. Solar Oscillations • Oscillation period ~ 5 minutes • Data averaged over 72 days (SOHO) or 36 days (GONG) to find frequencies • p-modes and g-modes

  6. Motivation nspot number Measure of sun Image credit: Broomhall et al., 2009 [2]

  7. Oscillation Modes Radial direction: • Radial order, n Surface: • Degree, l • Azimuthal order, m • Image credit: GONG, http://gong.nso.edu/

  8. Spherical Harmonics l = 1, m = 0 l = 1, m = 0 l = 1, m = 1 l = 1, m = 1 l = 2, m = 0 l = 2, m = 1 l = 2, m = 2 Image credit: Christensen-Dalsgaard, 2003 [3]

  9. Frequency Splitting • Fourier analysis • Legendre decomposition

  10. a k Coefficients over the Solar Cycle

  11. a k Coefficients over the Solar Cycle a 4 a 2 a 6 a 8

  12. Surface Magnetic Field itude Lat Sine latit titude Longitude Image credit: Solar Oscillations Investigation, http://soi.stanford.edu/magnetic/index6.html

  13. Surface Magnetic Field Magnetic flux (G) ude La Sine latitu titude Longitude

  14. Legendre Decomposition of B-field Scaled P k for: k = 0 k = 1 k = 2 k = 3 k = 4 Sum (40 components) = cos θ

  15. B k Coefficients over the Solar Cycle B 4 B 2 B 6 B 8

  16. B k Coefficients over the Solar Cycle B 4 B 2 Image credit: David Hathaway, http://solarscience.msfc.nasa.gov

  17. a k vs. B k a 2 B 2

  18. a k vs. B k a 4 B 4

  19. a k vs. B k – Linear Correlation a 2 vs. B 2 a 4 vs. B 4 SOHO GONG

  20. a k vs. B k over the Solar Cycle Rising phase Declining phase R = -.995 R = -.998 R = -.990 R = -.984 SOHO GONG

  21. a k vs. B k a 2 B 2 a k B k (scaled) a 4 (SOHO data) B 4

  22. Absolute slope of the linear fit lope (nHz/G) My data Absolute slo Antia et al. (2001) [4] Index number, k GONG data

  23. Legendre decomposition at the poles Rising edges (similar to Antia et al.) Flattened edges

  24. Legendre decomposition at the poles Rising edges (similar to Antia et al.) Flattened edges

  25. Legendre decomposition at the poles Rising edges (similar to Antia et al.) Flattened edges

  26. Legendre decomposition at the poles a 2 vs. B 2 a 4 vs. B 4 Flattened edges Rising edges

  27. Conclusion • Linear correlation between a k and B k – corroboration of Antia’s result • Correlation strength is similar for rising and declining phases of solar cycle – what does this mean for subsurface effects? – Further work: separating modes with different penetration depths • Slope varies nonmonotonically with k, regardless of handling of decomposition at poles

  28. References

Recommend


More recommend