smt solvers for verification and synthesis
play

SMT Solvers for Verification and Synthesis Andrew Reynolds VTSA - PowerPoint PPT Presentation

SMT Solvers for Verification and Synthesis Andrew Reynolds VTSA Summer School August 1 and 3, 2017 Acknowledgements Thanks to past and present members of development team of CVC4: Cesare Tinelli, Clark Barrett, Tim King, Morgan Deters,


  1. SMT Solvers for Verification and Synthesis Andrew Reynolds VTSA Summer School August 1 and 3, 2017

  2. Acknowledgements • Thanks to past and present members of development team of CVC4: • Cesare Tinelli, Clark Barrett, Tim King, Morgan Deters, Dejan Jovanovic, Liana Hadarean, Kshitij Bansal, Tianyi Liang, Nestan Tsiskardidze, Christopher Conway, Francois Bobot, Guy Katz, Andres Noetzli, Paul Meng, Alain Mebsout, Burak Ekici • …and external collaborators: • Viktor Kuncak, Amit Goel, Sava Krstic, Leonardo de Moura, Jasmin Blanchette, Thomas Wies, Radu Iosif, Haniel Barbosa, Pascal Fontaine, Chantal Keller

  3. Satisfiability Modulo Theories (SMT) Solvers Software Interactive Symbolic Synthesis Verification Proof Execution Tools, Tools Assistants Engines Planners Verification Path Constraints Specifications Conjectures Conditions • SMT solvers are: SMT • Fully automated reasoners Solvers • Widely used in applications

  4. Satisfiability Modulo Theories (SMT) Solvers Software Interactive Symbolic Synthesis Verification Proof Execution Tools, Tools Assistants Engines Planners Verification Path Constraints Specifications Conjectures Conditions SMT Expressed in first-order logic formulas Solvers over some fixed background theory T

  5. Contract-Based Software Verification @precondition: x in >y in …does this function ensure that x out =y in  y out =x in ? void swap(int x, int y) { Software Verification Tools x := x + y; y := x – y; x := x – y; } @ensures x out =y in  y out =x in

  6. Contract-Based Software Verification @precondition: x in >y in …does this function ensure that x out =y in  y out =x in ? void swap(int x, int y) { Software Verification Tools x := x + y; y := x – y; x in >y in Pre-condition x := x – y; x 2 =x in +y in  y 2 =y in } x 3 =x 2  y 3 =x 2 -y 2 @ensures x out =y in  Function Body y out =x in x out =x 3 -y 3  y out =y 3 (Negated) (x out ≠y in  y out ≠x in ) Post-condition

  7. Contract-Based Software Verification @precondition: x in >y in void swap(int x, int y) { Software Verification Tools x := x + y; y := x – y; x in >y in Pre-condition x := x – y; x 2 =x in +y in  y 2 =y in } x 3 =x 2  y 3 =x 2 -y 2 Function Body @ensures x out =x 3 -y 3  y out =y 3 x out =y in ∧ y out =x in (Negated) (x out ≠y in  y out ≠x in ) Post-condition SMT Solver

  8. Interactive Proof Assistants Theorem app_rev: forall (x : list) (y : list), rev append x y = append (rev y) (rev x). Interactive Proof Proof. Assistant ….does this theorem hold? What is the proof?

  9. Interactive Proof Assistants Theorem app_rev: forall (x : list) (y : list), rev append x y = append (rev y) (rev x). Interactive Proof Proof. Assistant ….does this theorem hold? What is the proof? List := cons( head : Int, tail : List ) | nil Signature  x:L.length(x)=ite(is-cons(x),1+length(tail(x)),0)  xy:L.append(x)=ite(is-cons(x),cons(head(x),append(tail(x),y)),y) Axioms  x:L.rev(x)=ite(is-cons(x),append(rev(tail(x)),cons(head(x),nil),nil) (Negated)  xy:L.rev(append(x,y))  append(rev(y),rev(x)) conjecture

  10. Interactive Proof Assistants Theorem app_rev: forall (x : list) (y : list), rev append x y = append (rev y) (rev x). Interactive Proof Proof. Assistant case is-cons x: rev append x y = by rev-def … case is-nil x: append x y = y by append-def List := cons( head : Int, tail : List ) | nil Signature rev x = nil by rev-def  x:L.length(x)=ite(is-cons(x),1+length(tail(x)),0) ∴ rev append x y = append (rev y) (rev x) by simplify  xy:L.append(x)=ite(is-cons(x),cons(head(x),append(tail(x),y)),y) Axioms QED.  x:L.rev(x)=ite(is-cons(x),append(rev(tail(x)),cons(head(x),nil),nil) (Negated)  xy:L.rev(append(x,y))  append(rev(y),rev(x)) conjecture SMT Solver

  11. Symbolic execution char buff[15]; char pass; Does this assertion hold cout << "Enter the password :"; for all executions? gets(buff); if (regex_match(buff, std::regex("([A-Z]+)") )) { if (strcmp(buff, “PASSWORD")) { cout << "Wrong Password"; Symbolic Execution } else { Engine cout << "Correct Password"; pass = ’Y’; } if (pass == ’Y’) { grant_root_permission (); Assert(strcmp(buff,” PASSWORD”)==0); } }

  12. Symbolic execution char buff[15]; char pass; Does this assertion hold cout << "Enter the password :"; for all executions? gets(buff); if (regex_match(buff, std::regex("([A-Z]+)") )) { if (strcmp(buff, “PASSWORD")) { cout << "Wrong Password"; Symbolic Execution } else { Engine cout << "Correct Password"; pass = ’Y’; } … if (pass == ’Y’) { ( assert (and ( = ( str.len buff) 15)) ( = ( str.len pass1) 1))) grant_root_permission (); ( assert (or (< ( str.len input) 15) ( = input ( str.++ buff pass0 rest))) Assert(strcmp(buff,”PASSWORD”)==0); ( assert ( str.in.re buff ( re.+ ( re.range "A" "Z")))) } ( assert (and ( not ( = buff "PASSWORD")) ( = pass1 pass0))) } ( assert ( = pass1 "Y")) ( assert ( not ( = buff "PASSWORD")))

  13. Symbolic execution char buff[15]; char pass; Does this assertion hold cout << "Enter the password :"; for all executions? gets(buff); if (regex_match(buff, std::regex("([A-Z]+)") )) { if (strcmp(buff, “PASSWORD")) { cout << "Wrong Password"; Symbolic Execution } else { Engine cout << "Correct Password"; pass = ’Y’; } … if (pass == ’Y’) { ( assert (and ( = ( str.len buff) 15)) ( = ( str.len pass1) 1))) grant_root_permission (); ( assert (or (< ( str.len input) 15) ( = input ( str.++ buff pass0 rest))) Assert(strcmp(buff,”PASSWORD”)==0); ( assert ( str.in.re buff ( re.+ ( re.range "A" "Z")))) } ( assert (and ( not ( = buff "PASSWORD")) ( = pass1 pass0))) } ( assert ( = pass1 "Y")) ( assert ( not ( = buff "PASSWORD"))) (define-fun input () String “AAAAAAAAAAAAAAAY”) SMT Solver (define-fun buff () String “AAAAAAAAAAAAAAA”) (define-fun pass () String “Y”)

  14. Symbolic execution char buff[15]; char pass; cout << "Enter the password :";  “ AAAAAAAAAAAAAAAY ” gets(buff); if (regex_match(buff, std::regex("([A-Z]+)") )) { if (strcmp(buff, “PASSWORD")) { cout << "Wrong Password"; Symbolic Execution } else { Engine cout << "Correct Password"; pass = ’Y’; } … if (pass == ’Y’) { ( assert (and ( = ( str.len buff) 15)) ( = ( str.len pass1) 1))) grant_root_permission (); ( assert (or (< ( str.len input) 15) ( = input ( str.++ buff pass0 rest))) Assert(strcmp(buff,” PASSWORD”)==0); ( assert ( str.in.re buff ( re.+ ( re.range "A" "Z")))) } ( assert (and ( not ( = buff "PASSWORD")) ( = pass1 pass0))) } ( assert ( = pass1 "Y")) ( assert ( not ( = buff "PASSWORD"))) (define-fun input () String “ AAAAAAAAAAAAAAAY ”) SMT Solver (define-fun buff () String “AAAAAAAAAAAAAAA”) (define-fun pass () String “Y”)

  15. Synthesis Tools Find an x that satisfies specification void maxList(List a, List b, List& c) x  a[i]  x  b[i] { int max; Synthesis for(i=0;i<a.size();i++){ Tools max = choose(x => x ≥ a[i] ∧ x ≥ b[i]); c := c.append(max); } return c; } @ensures:  i.(c out [i]  a[i]  c out [i]  b[i]) ?

  16. Synthesis Tools Find an x that satisfies specification void maxList(List a, List b, List& c) x  a[i]  x  b[i] { int max; Synthesis for(i=0;i<a.size();i++){ Tools max = choose(x => x  a[i]  x  b[i]); c := c.append(max); Is ite(a[i]  b[i],a[i],b[i]) } a solution? return c; }  (ite(a[i]  b[i],a[i],b[i])  a[i]  @ensures:  i.(c out [i]  a[i]  c out [i]  b[i]) ? ite(a[i]  b[i],a[i],b[i])  b[i])

  17. Synthesis Tools void maxList(List a, List b, List& c) { int max; Synthesis for(i=0;i<a.size();i++){ Tools max = if(a[i] ≥ b[i]{a[i]}else{b[i]}; c := c.append(max); Is ite(a[i]  b[i],a[i],b[i]) } a solution? return c; }  (ite(a[i]  b[i],a[i],b[i])  a[i]  @ensures: ∀ i.(c out [i] ≥ a[i] ∧ c out [i] ≥ b[i]) ite(a[i]  b[i],a[i],b[i])  b[i]) SMT Solver

  18. Constraints Supported by SMT Solvers • SMT solvers support: • Arbitrary Boolean combinations of theory constraints • Examples of supported theories : • Uninterpreted functions: f(a)=g(b,c) • Linear real/integer arithmetic: a  b+2*c+3 • Arrays: select(A,i)=select(store(A,i+1,3),i) • Bit-vectors: bvule(x,#xFF) • Algebraic Datatypes: x,y:List; tail(x)=cons(0,y) • Unbounded Strings: x,y:String; y=substr(x,0,len(x)-1) • … •  over each of these

  19. Constraints Supported by SMT Solvers • SMT solvers support: • Arbitrary Boolean combinations of theory constraints • Examples of supported theories  decision procedures • Uninterpreted functions:  Congruence Closure [ Nieuwenhuis/Oliveras 2005] • Linear real/integer arithmetic:  Simplex [ deMoura/Dutertre 2006] • Arrays:  [ deMoura/Bjorner 2009] • Bit-vectors:  Bitblasting, lazy approaches [Bruttomesso et al 2007,Hadarean et al 2014] • Algebraic Datatypes:  [ Barrett et al 2007,Reynolds/Blanchette 2015] • Unbounded Strings:  [ Zheng et al 2013,Liang et al 2014, Abdulla et al 2014] • … •  over each of these

Recommend


More recommend