smi 2012
play

SMI 2012 As-Conformal-As-Possible Discrete Volumetric Mapping - PowerPoint PPT Presentation

SMI 2012 As-Conformal-As-Possible Discrete Volumetric Mapping Gilles-Philippe Paill Pierre Poulin University of Montreal, Canada May 23, 2012 Context Parameterization 2D 3D 2 Context Parameterization Some popular codomains Cube


  1. SMI 2012 As-Conformal-As-Possible Discrete Volumetric Mapping Gilles-Philippe Paillé Pierre Poulin University of Montreal, Canada May 23, 2012

  2. Context Parameterization 2D 3D 2

  3. Context Parameterization Some popular codomains Cube Sphere Polycube 3

  4. Context Parameterization ● Energy – Distortion measure ● Measured transformation – Rotation – Uniform scale – Non-uniform scale – Shear 4

  5. Context Parameterization ● Energy – Distortion measure ● Measured transformation – Rotation – Uniform scale – Non-uniform scale – Shear 5

  6. Context Parameterization ● Energy – Distortion measure ● Desired transformation – Rotation – Uniform scale – Non-uniform scale – Shear 6

  7. Context Parameterization ● Conformal maps – Local transformation = Uniform scale * Rotation 7

  8. Context Conformal maps – Jacobian matrix 8

  9. Context Conformal maps – Jacobian matrix 9

  10. Context Conformal maps – Jacobian matrix 10

  11. Context Conformal maps – Jacobian matrix 11

  12. Context Conformal maps – 3D? ● Problem – 2D conformality is possible – 3D conformality is not possible ● Our solution – Be as-conformal-as-possible (ACAP) – Linear method based on Cauchy-Riemann 12

  13. Context Conformal maps – 3D? ● Problem – 2D conformality is possible – 3D conformality is not possible ● Our solution – Be as-conformal-as-possible (ACAP) – Linear method based on Cauchy-Riemann 13

  14. Context Conformal maps – 3D? Harmonic way 2D 3D First order Cauchy-Riemann ? Second order Harmonic Harmonic 14

  15. Context Conformal maps – 3D? ACAP way 2D 3D First order Cauchy-Riemann Generalized CR Second order Harmonic ACAP 15

  16. Method Idea Optimize jacobian matrix on 3 canonical planes 16

  17. Method Formulation Optimize jacobian sub-matrices 17

  18. Method Formulation A compact form 18

  19. Method Formulation A more compact form 19

  20. Method Rotation invariance ● Problem – Operator D supposes there's no rotation ● Solution – Estimate rotation contained in – Cancel rotation part with 20

  21. Method Algorithm ● Goal – Minimize the energy functional ● Steps 1) Surface conformal map 2) Volume harmonic map 3) Local rotation estimation 4) Volume ACAP map 21

  22. Results Tetrahedra Timing Harmonic : 48 secs 5569k ACAP : 154 secs 22

  23. Results Remarks ● Approximately 3x longer to compute ● Results are always better than harmonic 23

  24. Results Variations ● Balance uniform scale and orthogonality – Use a parameter – : Orthogonality only – : Uniform scale only 24

  25. Conclusion Limitations ● Element inversion – Cannot be garanteed with linear energies – Especially in concave parts ● Fixed boundaries – Limit the movement of the interior – Conformal surface maps are not optimal 25

  26. Conclusion Future work ● Volume-aware surface parameterization 26

  27. Conclusions Future work ● Volume-aware surface parameterization 27

  28. Conclusions Future work ● Smart singularity placement 28

  29. Conclusions ● Generalized Cauchy-Riemann ● Fast ● Easy to implement ● Generalize to N dimensions ● To do – Free boundaries – Smart placement of singularities – Optimal codomain geometry 29

  30. Conclusions Thank you! 30

Recommend


More recommend