singlet doublet triplet dark matter and neutrino masses
play

Singletdoublet/triplet dark matter and neutrino masses Simon May - PowerPoint PPT Presentation

simon.may@mpa-garching.mpg.de Singletdoublet/triplet dark matter and neutrino masses Simon May Max Planck Institute for Astrophysics (& Institute of Theoretical Physics, WWU Mnster) 54th Rencontres de Moriond (EW), La Thuile, 20th


  1. simon.may@mpa-garching.mpg.de Singlet–doublet/triplet dark matter and neutrino masses Simon May Max Planck Institute for Astrophysics (& Institute of Theoretical Physics, WWU Münster) 54th Rencontres de Moriond (EW), La Thuile, 20th March 2019 Based on Juri Fiaschi, Michael Klasen, and Simon May. Singlet–doublet fermion and triplet scalar dark matter with radiative neutrino masses . Submitted to JHEP. 2018. arXiv: 1812.11133 [hep-ph]

  2. Singlet–doublet/triplet dark matter and neutrino masses Evidence for dark matter and massive neutrinos Galactic rotation Gravitational CMB anisotropy curves lensing Structure known matter formation % 𝟨 ΛCDM ≈ 2015: “for the ≈ 𝟥𝟨 % e r t t m a discovery of cosmological r k a d neutrino model % y g r oscillations, which ≈ e n 𝟣 e 𝟪 k r a d shows that neutrinos have mass” 1 Simon May

  3. Singlet–doublet/triplet dark matter and neutrino masses Minimal DM models with radiative neutrino masses “Radiative seesaw models” ▶ ≤ 4 new scalar/fermion multiplets DM and ν masses ▶ SU ( 3 ) : color singlets through one SU ( 2 ) : singlets, doublets or triplets mechanism! ▶ Additional stabilizing ℤ 2 symmetry Classified in Restrepo, Zapata, and Yaguna. arXiv: 1308.3655 [hep-ph] Examples of similar work: T3-B ( α = −1 ) ▶ “Scotogenic model”/“radiative seesaw”: Ma. arXiv: hep-ph/0601225 ▶ T1-3-A ( α = 0 ) : Esch, Klasen, Lamprea, and Yaguna. arXiv: 1602.05137 [hep-ph] ▶ T1-2-A ( α = 0 ) : Esch, Klasen, and Yaguna. arXiv: 1804.03384 [hep-ph] 2 Simon May

  4. √ Ψ √ ) ψ ′ ψ ϕ Singlet–doublet/triplet dark matter and neutrino masses The model T1-3-B ( α = 0) Field Gen.’s Spin Lorentz rep. SU ( 3 ) SU ( 2 ) U ( 1 ) ℤ 2 SM fields + … 1 1 1 / ( 1 / 2 , 0 ) 1 1 0 −1 2 1 1 / ( 1 / 2 , 0 ) 1 2 −1 −1 2 1 1 / ( 1 / 2 , 0 ) 1 2 1 −1 2 n s 0 ( 0, 0 ) 1 3 0 −1 “dark sterile ν ” “dark vector-like lepton doublet” “neutral inert triplet” 1 2 ϕ 0 ϕ + ψ = ( ψ 0 ψ ′ = ( ψ ′ + i i Ψ = Ψ 0 ϕ i = ( − 1 ψ − ) ψ ′ 0 ) ϕ − 2 ϕ 0 i i DM candidates! 3 Simon May

  5. ψ ′ Ψ Singlet–doublet/triplet dark matter and neutrino masses New interactions in this model (Lagrangian) ψ ′ , ψ H ϕ i ⟶ λ ij ⟶ λ 4 , λ 5 H 1 H ϕ j ϕ i ϕ j ⟶ λ ijkl ⟶ λ ij L i 3 6 ϕ k ϕ l ϕ j LNV/LFV, ν masses 4 Simon May

  6. ν ν ∑ ) Ψ ϕ ψ ′ ψ ∑ Singlet–doublet/triplet dark matter and neutrino masses How do we obtain massive neutrinos? After mixing and electroweak symmetry breaking (EWSB), all these models have loop corrections of this form ( → d = 5 Weinberg operator): ⟨ H 0 ⟩ ⟨ H 0 ⟩ χ k mixing Usually: parameters ⇒ ν masses ν i ν j Use Casas–Ibarra parametrization to invert η l relation: ν masses ⇒ λ 6 Majorana neutrino mass matrix M ij ν = ∑ M ijkl k , l n s n f m 3 m 2 1 6 λ jn 2 = λ im 6 ( O η ) ln ( O η ) lm ( U χ ) ∗ ln ( χ k χ k kn f m 2 l − m 2 m 2 32 π 2 η 0 η 0 l =1 k =1 χ k l Diagonalize ⇒ neutrino masses diag ( m ν 1 , m ν 2 , m ν 3 ) ( n s non-zero) 5 Simon May

  7. micrOMEGAs SARAH micrOMEGAs minimal-lagrangians SPheno.spc.<model> LesHouches.in.<model>_low SPheno Singlet–doublet/triplet dark matter and neutrino masses Computational tool chain for minimal models Definition of the field content ( data.py ) SARAH model files Manual changes, add SPheno.m <model>.m , particles.m , parameters.m SPheno code model files ( *.mdl ) SLHA input file SLHA spectrum file 6 Simon May

  8. Singlet–doublet/triplet dark matter and neutrino masses Dark matter with neutrino masses As a function of dark matter mass 0.40 Ω c = Ω obs c 0.35 χ DM ( λ i 1 6 = 0.1 ) χ DM ( λ i 1 6 = 0.5 ) 0.30 χ DM ( λ i 1 6 = 0.8 ) 0.25 η DM ( λ i 1 6 = 0.1 ) Ω c h 2 η DM ( λ i 1 6 = 0.5 ) 0.20 η DM ( λ i 1 6 = 0.8 ) 0.15 0.10 0.05 0.00 500 750 1000 1250 1500 1750 2000 2250 2500 m DM [GeV] 7 Simon May

  9. Singlet–doublet/triplet dark matter and neutrino masses Random scan with full observational constraints Neutrino masses/mixing, DM relic, Higgs mass, DD, collider, LFV 10 −6 10 −11 10 −10 10 −14 10 −14 10 −17 10 −18 BR ( μ → e γ ) 10 −20 σ SI [ pb ] 10 −22 10 −23 10 −26 10 −26 XENON1T 10 −29 10 −30 LEP excluded XENONnT 10 −32 10 1 10 4 10 2 10 3 m DM [ GeV ] Singlet–doublet fermion DM 8 Simon May

  10. Singlet–doublet/triplet dark matter and neutrino masses Random scan with full observational constraints Neutrino masses/mixing, DM relic, Higgs mass, DD, collider, LFV 10 −6 10 −11 10 −8 10 −14 10 −10 10 −17 10 −12 BR ( μ → e γ ) 10 −20 10 −14 σ SI [ pb ] 10 −16 10 −23 10 −18 10 −26 10 −20 XENON1T 10 −29 LEP excluded XENONnT 10 −22 10 −32 10 1 10 4 10 2 10 3 m DM [ GeV ] Triplet scalar DM 9 Simon May

  11. Singlet–doublet/triplet dark matter and neutrino masses Conclusions ▶ T1-3-B ( α = 0 ) offers significant regions of unprobed parameter space and includes other perks (gauge coupling unification) ▶ Singlet-doublet fermion DM: ▶ Strong complementarity between DD and LFV ▶ Preference for pure doublet at 1 TeV ▶ Triplet scalar DM: ▶ More difficult to probe, but mass fixed at ca. 2 TeV ▶ Will remain partially out of reach for both DD and LFV ▶ Strongest LFV constraints from μ → e γ , μ → 3 e τ → e γ currently not sensitive at all 10 Simon May

Recommend


More recommend