simulation of the fluid system
play

Simulation of the fluid system with long-range dependent input Oleg - PowerPoint PPT Presentation

Simulation of the fluid system with long-range dependent input Oleg Lukashenko Institute of Applied Mathematical Research KarSC RAS, Russia Mikhail Nasadkin Petrozavodsk State University, Russia Gaussian traffic Each source is described by


  1. Simulation of the fluid system with long-range dependent input Oleg Lukashenko Institute of Applied Mathematical Research KarSC RAS, Russia Mikhail Nasadkin Petrozavodsk State University, Russia

  2. Gaussian traffic Each source is described by ON/OFF process      1 , t ON period ( m )  ( m )  W  W ( t ) ( t ), t 0 , where    0 , t OFF period      F x ( x ) ~ , 1 2 ON ON ON      x F ( x ) ~ , 1 2 OFF OFF OFF Cumulative traffic of M sources on [0, tT] tT M    ( m ) W W ( tT ) ( u ) du  m 1 0

  3. Convergence to FBM Interest is in the behavior of this process when M,T are large(Taqqu, 1997).       ON W ( tT ) TMt        d     ON OFF lim lim c B ( t ) , t 0 H H  M T      T M          3 min( , ) 1    ON OFF H 1 here 2 2  It means that   H ON W ( tT ) TMt M T cB ( t )    H ON OFF

  4. System with finite buffer   Input : A ( t ) mt am B ( t ) H Service : constant service rate C Stationary overflow probability:           sup P ( Q b ) P A ( t ) ct b      t 0

  5. System with finite buffer          Q ( t ) Q ( t 1 ) c m am B ( t ) B ( t 1 ) b H H   Q ( t ) 0 Q ( t ) b  Q b ( t ) b  Q b ( t ) 0    b              Q ( t ) min Q ( t 1 ) C m am B ( t ) B ( t 1 ) ,   b b H H

  6. System with finite buffer Buffer size 3 Infinite buffer

  7. Overflow and loss probability N     I Q b k Overflow probability (N – sample    k 1 P ( Q b ) size): N   T            Q ( t 1 ) m am B ( t ) B ( t 1 ) C b b H H   P ( b , T ) k 1 Loss probability on [0,T]: Loss A ( T )             E Q m am B ( t ) B ( t 1 ) C b   P ( b ) b H H T Loss m    P ( b ) const , b Loss [Kim & Shroff, 2001]  P ( Q b ) P ( 0 )   Then Loss P ( b ) P ( Q b )  Loss P ( Q 0 )

  8. Relative error M – number of samples ~ p - estimation of overflow probability Loss   ~   p Var     ~   Loss 1     p RE ~ , p 0     Loss ~   Loss p M   p Loss E     Loss It means that number of samples M must be sufficiently large.

  9. Overflow probability – dependence on sample size H=0.9

  10. Overflow probability – theoretical results [Duffield N., O’Connell N.,1995] In the case of fractional Brownian motion input    2 2 H 2 H       1 b C          P ( Q b ) exp        2 1 H H  

  11. Overflow probability – comparison with theoretical results Simulation H=0.9 Theory H=0.9

  12. Loss probability – dependence on sample size H=0.9

  13. Loss probability – dependence on H

  14. Loss probability – dependence on buffer size

  15. References  Asmussen S., Glynn P. Stochastic Simulation: algorithms and analysis. Springer, 2007.  Norros I. A storage model with self-similar input, Queuing Systems, vol. 16, pp. 387-396, 1994.  Han S. Kim, Ness B. Shroff. On the asymptotic relationship between the overflow probability and the loss ratio, Adv. in Appl. Probab. Volume 33, Number 4 (2001), 836-863.  Taqqu M., Willinger W., Sherman R. Proof of a fundamental result in self-similar traffic modeling, Computer Communication Review, 27 (1997) 5-23.  Duffield N., O’Connell N. Large deviations and overflow probabilities for general single-server queue, with applications. Math. Proc. Camb. Phil. Soc. 118 (1995), 363 – 374. [ p. 69 ]

  16. Thank you

Recommend


More recommend