simulating quantum correlations as a sampling problem
play

Simulating quantum correlations as a sampling problem Julien Degorre - PowerPoint PPT Presentation

Simulating quantum correlations as a sampling problem Julien Degorre | L.R.I. Universit Paris Sud > + | L.I.T.Q. Universit Montral > (joint work with : Sophie Laplante* and Jrmie Roland*) * L.R.I. Universit Paris Sud


  1. Simulating quantum correlations as a sampling problem Julien Degorre | L.R.I. Université Paris Sud > + | L.I.T.Q. Université Montréal > (joint work with : Sophie Laplante* and Jérémie Roland*˚) * L.R.I. Université Paris Sud ˚Université Libre de Bruxelles Physical Review A, 72:062314, 2005

  2. The problem of simulating quantum correlations L.H.V. model L.H.V. model + + Non Local Box Communication (worst case) 1 nlbit 1bit L.H.V. model [CGMP05] + [TB03] Post-Selection (detection loophole) Efficiency 2/3 [GG99] L.H.V. model Distributed + Sampling Problem Communication (Average) [DLR05] [S99], [CGM00] 1/10

  3. Local Hidden Variable Model λ Doesn't depend on the inputs! Input: Input: a   b Alice Bob B  A  a ,  ∈ {− 1,  1 } b ,  ∈ {− 1,  1 } Output: Output: BelI's theorem: impossible to reproduce quantum correlations 2 /10

  4. Biased Hidden Variable Model Infinite biased Shared Randomness  s ~ ∣  a ⋅  s ∣    s ∈ S 2 2  a      s b  s Alice Bob B   s = sign  b ,  b ⋅  s  a ,  a ⋅ A   s =− sign   s  a ⋅ P  A, B = 1 − AB  b  4 3/ 10

  5. a ⋅  s ~ ∣   s ∣ Step 1: Local Sampling of the biased distribution:  2   0 ,    1 ,   2 , ... ,   k , ... ~ U S 2 Shared randomness independent on the inputs : The rejection method: Set k=0   k ~ U S 2 1. Alice picks u k ~ U [ 0,1 ] 2. Alice picks u k ≤ ∣ a ⋅  k ∣ 3. Test whether    s =    k  k If test succeeds, Alice ACCEPTS and sets   k Go back to 1 with k=k+1 Otherwise, Alice REJECTS  s ~ ∣  a ⋅  s ∣ When the process terminates, Alice has  2  4 /10

  6. Step 2: Distributed Sampling problem With communication  0 ,    1 , ...   k ~ U S 2  b a  Bob Alice Rejection method : Index k Set k= 0   k ~ U S 2  s =   1. Alice picks  k Communication 2 bits on average u k ~ U [ 0,1 ] 2. Alice picks [Steiner99 + Gisin² 00] u k ≤ ∣  k ∣ a ⋅  3. Test If  s =    k   s ~ ∣  a ⋅  s ∣  s   s Go to 1. k=k+1  2  5 /10

  7. Step 2: Distributed Sampling problem With post selection  0 ,    1 , ...   k ~ U S 2  b a  Bob Alice Rejection method :   0 ~ U S 2  s =   1. Alice picks Post selection  0 Communication [Gisin Gisin 00] u 0 ~ U [ 0,1 ] 2. Alice picks u 0 ≤ ∣  a ⋅  0 ∣ 3. Test If  s =    0   s ~ ∣  a ⋅  s ∣  s   s Abort  2  P(output)= 1/2 6 /10

  8. But we can be more clever...  0 ,    1 , ...  Used only by Alice !  k ~ U S 2  b a  Bob Alice Rejection method :   0 ~ U S 2  s =   1. Alice picks Post selection  0 Communication [Gisin Gisin 00] u 0 ~ U [ 0,1 ] 2. Alice picks u 0 ≤ ∣  a ⋅  0 ∣ 3. Test If  s =    0   s ~ ∣  a ⋅  s ∣  s   s Abort  2  P(output)= 1/2 6 /10

  9. Local Sampling of the biased distribution: a new method Recall the rejection method:   0 ~ U S 2 1. Alice picks u 0 ~ U [ 0,1 ] 2. Alice picks u 0 ≤ ∣  a ⋅  0 ∣ 3. Test whether   s =    0  0 If Test OK Alice ACCEPTS and sets   0 Otherwise Alice REJECTS go back to 1 with another  s ~ ∣   a ⋅  s ∣ / 2  So, Alice has 7 /10

  10. Local Sampling of the biased distribution: a new method Recall the rejection method: ∣  a ⋅  ∣ ~ U [ 0,1 ]   0 ~ U S 2 1. Alice picks when  ~ U S 2 u 0 = ∣  a ⋅  1 ∣ ~ U [ 0,1 ] u 0 ~ U [ 0,1 ] 2. Alice picks u 0 = ∣  a ⋅  1 ∣ ≤ ∣  a ⋅  0 ∣ 3. Test whether   s =    0  0 If Test OK Alice ACCEPTS and sets   0 Otherwise Alice REJECTS go back to 1 with another  s ~ ∣   a ⋅  s ∣ / 2  So, Alice has 7 /10

  11. Local Sampling of the biased distribution: a new method The Choice method: ∣  a ⋅  ∣ ~ U [ 0,1 ]   0 ~ U S 2 1. Alice picks when  ~ U S 2 u 0 = ∣  a ⋅  1 ∣ ~ U [ 0,1 ] u 0 ~ U [ 0,1 ] 2. Alice picks u 0 = ∣  a ⋅  1 ∣ ≤ ∣  a ⋅  0 ∣ 3. Test whether   s =    0  0 If Test OK Alice ACCEPTS and sets   s =   1  1 Otherwise Alice ACCEPTS and sets  s ~ ∣   a ⋅  s ∣ / 2  So, Alice has 7 /10

  12. Step 2: Distributed Sampling problem With communication  0 ,    1 ~ U S 2  b a  Bob Alice Choice method : x = 0 or 1   0 ~ U S 2 Bob sets : 1. Alice picks Communication   1 ~ U S 2  s =   2. Alice picks  x 1 bit Worst Case [TB03] 3. Tests whether ∣  a ⋅  1 ∣ ≤ ∣  a ⋅  0 ∣  s =    0 If yes  s =   1  s ~ ∣  a ⋅  s ∣ If no    s  s  With 2  8 /10

  13. Without resource  0 ,    1 ~ U S 2 a   b Choice method : Bob always  s =    0 ,   sets:  0  1 Bob Alice picks Alice Tests whether ∣  a ⋅  1 ∣ ≤ ∣  a ⋅  0 ∣  s =    0 If yes x=0  s =   1 If no x=1 Simulation of non separable Werner State. − ∣  1 − p  1 − × W = p ∣ With p=1/2 4 Alice's output : Bob's output : a ,  a ⋅ B  sign  b ,  b ⋅ A   s = − sign   s   s =  s  9 /10

  14. With a non local box  0 ,    1 ~ U S 2 a   b Choice method : Bob always  s =    0 ,   sets:  0  1 Bob Alice picks Alice Tests whether Bob Tests whether ∣  a ⋅  1 ∣ ≤ ∣  a ⋅  0 ∣ sign   0 = sign  b ⋅ b ⋅  1   s =    0 If yes If yes: cool ! y=0 x=0  s =   1 If no: Aïe ! y=1 If no x=1 y x x ∧ y = a ⊕ b Non-Local Box: a b Alice's output : Bob's output : −− 1  a − 1  b a ,  a ,  a ⋅ a ⋅ B  sign  b ,  b ⋅ A  A   s =  s = − sign  sign   s   s   s =  s  9 /10

  15. Conclusion ● The distributed sampling problem give us a unified framework for the problem of simulating quantum correlations. ● Related results: POVMs : Post Selection( Efficiency 1/3), Communication and Non-local Boxes (2 nl-Bits + 4 bits on average) Some preliminary results for higher dimensions. ● Open problems: Multipartite states and non maximally entangled states. 10 /10

Recommend


More recommend