shower hadronisation uncertainties for precision top
play

Shower & Hadronisation Uncertainties for Precision Top Physics - PowerPoint PPT Presentation

Shower & Hadronisation Uncertainties for Precision Top Physics Peter Skands (Monash U) Scale Variations : How big and how correlated? 7-point variations, with (conservative) soft compensation terms Provided automatically as vector of


  1. Shower & Hadronisation Uncertainties for Precision Top Physics Peter Skands (Monash U) Scale Variations : How big and how correlated? → 7-point variations, with (conservative) soft compensation terms Provided automatically as vector of event weights? ME Corrections Estimating sensitivity to process-specific non-singular terms Alternative Shower Models? Relevant variations in baseline PYTHIA + Status of DIRE and VINCIA Colour Reconnections Interesting physics & annoying complication: proposals for top (+ Ambiguity of MC mass definition?) CMS Top Meeting CERN November 2018

  2. <latexit sha1_base64="bHQPvYBVMNQo3pKhazNQVSaMAE=">AB73icdZDLSgMxFIbPeK31VnXpJlgEV2VShNZd0Y3LCvYC7VDOpJk2NHMxyQhl6Eu4caGIW1/HnW9jOq2goj8EPv5zDjn9xMptHdD2dldW19Y7OwVdze2d3bLx0ctnWcKsZbLJax6vqouRQRbxlhJO8mimPoS97xJ1fzeueKy3i6NZME+6FOIpEIBga3X7KJMxDvSgVHYr1KX0okpyqFK6AFqvEVpxc5Vhqeag9N4fxiwNeWSYRK171E2Ml6Eygk+K/ZTzRNkExzxnsUIQ69LN93Rk6tMyRBrOyLDMnd7xMZhlpPQ92hmjG+ndtbv5V6UmqHuZiJLU8IgtPgpSUxM5seToVCcGTm1gEwJuythY1TIjI2oaEP4upT8D+1qhVq+OS83LpdxFOAYTuAMKNSgAdfQhBYwkPAT/Ds3DmPzovzumhdcZYzR/BDztsnT5iQJA=</latexit> <latexit sha1_base64="bHQPvYBVMNQo3pKhazNQVSaMAE=">AB73icdZDLSgMxFIbPeK31VnXpJlgEV2VShNZd0Y3LCvYC7VDOpJk2NHMxyQhl6Eu4caGIW1/HnW9jOq2goj8EPv5zDjn9xMptHdD2dldW19Y7OwVdze2d3bLx0ctnWcKsZbLJax6vqouRQRbxlhJO8mimPoS97xJ1fzeueKy3i6NZME+6FOIpEIBga3X7KJMxDvSgVHYr1KX0okpyqFK6AFqvEVpxc5Vhqeag9N4fxiwNeWSYRK171E2Ml6Eygk+K/ZTzRNkExzxnsUIQ69LN93Rk6tMyRBrOyLDMnd7xMZhlpPQ92hmjG+ndtbv5V6UmqHuZiJLU8IgtPgpSUxM5seToVCcGTm1gEwJuythY1TIjI2oaEP4upT8D+1qhVq+OS83LpdxFOAYTuAMKNSgAdfQhBYwkPAT/Ds3DmPzovzumhdcZYzR/BDztsnT5iQJA=</latexit> <latexit sha1_base64="bHQPvYBVMNQo3pKhazNQVSaMAE=">AB73icdZDLSgMxFIbPeK31VnXpJlgEV2VShNZd0Y3LCvYC7VDOpJk2NHMxyQhl6Eu4caGIW1/HnW9jOq2goj8EPv5zDjn9xMptHdD2dldW19Y7OwVdze2d3bLx0ctnWcKsZbLJax6vqouRQRbxlhJO8mimPoS97xJ1fzeueKy3i6NZME+6FOIpEIBga3X7KJMxDvSgVHYr1KX0okpyqFK6AFqvEVpxc5Vhqeag9N4fxiwNeWSYRK171E2Ml6Eygk+K/ZTzRNkExzxnsUIQ69LN93Rk6tMyRBrOyLDMnd7xMZhlpPQ92hmjG+ndtbv5V6UmqHuZiJLU8IgtPgpSUxM5seToVCcGTm1gEwJuythY1TIjI2oaEP4upT8D+1qhVq+OS83LpdxFOAYTuAMKNSgAdfQhBYwkPAT/Ds3DmPzovzumhdcZYzR/BDztsnT5iQJA=</latexit> <latexit sha1_base64="bHQPvYBVMNQo3pKhazNQVSaMAE=">AB73icdZDLSgMxFIbPeK31VnXpJlgEV2VShNZd0Y3LCvYC7VDOpJk2NHMxyQhl6Eu4caGIW1/HnW9jOq2goj8EPv5zDjn9xMptHdD2dldW19Y7OwVdze2d3bLx0ctnWcKsZbLJax6vqouRQRbxlhJO8mimPoS97xJ1fzeueKy3i6NZME+6FOIpEIBga3X7KJMxDvSgVHYr1KX0okpyqFK6AFqvEVpxc5Vhqeag9N4fxiwNeWSYRK171E2Ml6Eygk+K/ZTzRNkExzxnsUIQ69LN93Rk6tMyRBrOyLDMnd7xMZhlpPQ92hmjG+ndtbv5V6UmqHuZiJLU8IgtPgpSUxM5seToVCcGTm1gEwJuythY1TIjI2oaEP4upT8D+1qhVq+OS83LpdxFOAYTuAMKNSgAdfQhBYwkPAT/Ds3DmPzovzumhdcZYzR/BDztsnT5iQJA=</latexit> NOTE ON DIFFERENT ALPHA(S) CHOICES s α α s Value of F MSbar 0.1188 2L n =5 With CMW, IR pole max F Pythia Monash 2013 (0.1365 1L ) n =5 max shifts upwards F Sherpa (CMW 0.1188 2L ) n =5 max 1 α s “PDG” 1 − 10 Slower pace of 1-loop 1.6 Default PYTHIA uses a large value of α s (M Z ) running allows to have Ratio 1.4 to agree with NLO 3-jet rate at LEP similar Λ QCD as PDG 1.2 1 0 1 2 Log10(p ) [GeV] T � 2 P ETER S K A NDS M O N ASH U.

  3. <latexit sha1_base64="Xdh2Csqxh62DOAuJZ5OMLC+2lUE=">ACRnicbVC7SwMxHP5dfdX6qjq6BIug/WuCDoWXRwVbCv0rkcuzbWhSe5IckI5+te5OLv5J7g4KOJq+kDU+kHg43uQ5ItSzrRx3WensLC4tLxSXC2trW9sbpW3d5o6yRShDZLwRN1FWFPOJG0YZji9SxXFIuK0FQ0ux37rnirNEnlrhikNBO5JFjOCjZXCcuDHCpPcxzt41AfDkKvU/NF1qkdjX6qtW8V+ZoJ5KFjFIWuz+W0cjKJH03puGwXHGr7gRongzUoEZrsPyk9NSCaoNIRjrduem5ogx8owumo5GeapgMcI+2LZVYUB3kxlG6MAqXRQnyh5p0ET92cix0HoIpsU2PT1X28s/ue1MxOfBzmTaWaoJNOL4owjk6DxpqjLFCWGDy3BRDH7VkT62O5q7PIlO4L398vzpFmrepbfnFbqF7M5irAH+3AIHpxBHa7gGhpA4AFe4A3enUfn1flwPqfRgjPr7MIvFOALPpmuhw=</latexit> <latexit sha1_base64="Xdh2Csqxh62DOAuJZ5OMLC+2lUE=">ACRnicbVC7SwMxHP5dfdX6qjq6BIug/WuCDoWXRwVbCv0rkcuzbWhSe5IckI5+te5OLv5J7g4KOJq+kDU+kHg43uQ5ItSzrRx3WensLC4tLxSXC2trW9sbpW3d5o6yRShDZLwRN1FWFPOJG0YZji9SxXFIuK0FQ0ux37rnirNEnlrhikNBO5JFjOCjZXCcuDHCpPcxzt41AfDkKvU/NF1qkdjX6qtW8V+ZoJ5KFjFIWuz+W0cjKJH03puGwXHGr7gRongzUoEZrsPyk9NSCaoNIRjrduem5ogx8owumo5GeapgMcI+2LZVYUB3kxlG6MAqXRQnyh5p0ET92cix0HoIpsU2PT1X28s/ue1MxOfBzmTaWaoJNOL4owjk6DxpqjLFCWGDy3BRDH7VkT62O5q7PIlO4L398vzpFmrepbfnFbqF7M5irAH+3AIHpxBHa7gGhpA4AFe4A3enUfn1flwPqfRgjPr7MIvFOALPpmuhw=</latexit> <latexit sha1_base64="Xdh2Csqxh62DOAuJZ5OMLC+2lUE=">ACRnicbVC7SwMxHP5dfdX6qjq6BIug/WuCDoWXRwVbCv0rkcuzbWhSe5IckI5+te5OLv5J7g4KOJq+kDU+kHg43uQ5ItSzrRx3WensLC4tLxSXC2trW9sbpW3d5o6yRShDZLwRN1FWFPOJG0YZji9SxXFIuK0FQ0ux37rnirNEnlrhikNBO5JFjOCjZXCcuDHCpPcxzt41AfDkKvU/NF1qkdjX6qtW8V+ZoJ5KFjFIWuz+W0cjKJH03puGwXHGr7gRongzUoEZrsPyk9NSCaoNIRjrduem5ogx8owumo5GeapgMcI+2LZVYUB3kxlG6MAqXRQnyh5p0ET92cix0HoIpsU2PT1X28s/ue1MxOfBzmTaWaoJNOL4owjk6DxpqjLFCWGDy3BRDH7VkT62O5q7PIlO4L398vzpFmrepbfnFbqF7M5irAH+3AIHpxBHa7gGhpA4AFe4A3enUfn1flwPqfRgjPr7MIvFOALPpmuhw=</latexit> <latexit sha1_base64="Xdh2Csqxh62DOAuJZ5OMLC+2lUE=">ACRnicbVC7SwMxHP5dfdX6qjq6BIug/WuCDoWXRwVbCv0rkcuzbWhSe5IckI5+te5OLv5J7g4KOJq+kDU+kHg43uQ5ItSzrRx3WensLC4tLxSXC2trW9sbpW3d5o6yRShDZLwRN1FWFPOJG0YZji9SxXFIuK0FQ0ux37rnirNEnlrhikNBO5JFjOCjZXCcuDHCpPcxzt41AfDkKvU/NF1qkdjX6qtW8V+ZoJ5KFjFIWuz+W0cjKJH03puGwXHGr7gRongzUoEZrsPyk9NSCaoNIRjrduem5ogx8owumo5GeapgMcI+2LZVYUB3kxlG6MAqXRQnyh5p0ET92cix0HoIpsU2PT1X28s/ue1MxOfBzmTaWaoJNOL4owjk6DxpqjLFCWGDy3BRDH7VkT62O5q7PIlO4L398vzpFmrepbfnFbqF7M5irAH+3AIHpxBHa7gGhpA4AFe4A3enUfn1flwPqfRgjPr7MIvFOALPpmuhw=</latexit> <latexit sha1_base64="4qbB5VPHVJy+X9b30H0kDwplO90=">AB/nicdVDLSgMxFM3UV62vUXHlJlgEV0M607F1V3TjsoJ9QKeUTJpQzMPkoxQhoK/4saFIm79Dnf+jZm2goeuHByzr3k3uMnEmF0IdRWFldW98obpa2tnd298z9g7aMU0Foi8Q8Fl0fS8pZRFuKU67iaA49Dnt+JOr3O/cUSFZHN2qaUL7IR5FLGAEKy0NzCN/gDzJQoiscxd6SU5QbWCWkV36q5zod9V23VcOzc20Y1WLHQHGWwRHNgvnvDmKQhjRThWMpeBSWqn2GhGOF0VvJSRNMJnhEe5pGOKSyn83Xn8FTrQxhEAtdkYJz9ftEhkMp6GvO0OsxvK3l4t/eb1UBfV+xqIkVTQi4+ClEMVwzwLOGSCEsWnmAimN4VkjEWmCidWEmH8HUp/J+0baui+U213LhcxlEx+AEnIEKqIEGuAZN0AIEZOABPIFn4954NF6M10VrwVjOHIfMN4+AeXrk4E=</latexit> <latexit sha1_base64="4qbB5VPHVJy+X9b30H0kDwplO90=">AB/nicdVDLSgMxFM3UV62vUXHlJlgEV0M607F1V3TjsoJ9QKeUTJpQzMPkoxQhoK/4saFIm79Dnf+jZm2goeuHByzr3k3uMnEmF0IdRWFldW98obpa2tnd298z9g7aMU0Foi8Q8Fl0fS8pZRFuKU67iaA49Dnt+JOr3O/cUSFZHN2qaUL7IR5FLGAEKy0NzCN/gDzJQoiscxd6SU5QbWCWkV36q5zod9V23VcOzc20Y1WLHQHGWwRHNgvnvDmKQhjRThWMpeBSWqn2GhGOF0VvJSRNMJnhEe5pGOKSyn83Xn8FTrQxhEAtdkYJz9ftEhkMp6GvO0OsxvK3l4t/eb1UBfV+xqIkVTQi4+ClEMVwzwLOGSCEsWnmAimN4VkjEWmCidWEmH8HUp/J+0baui+U213LhcxlEx+AEnIEKqIEGuAZN0AIEZOABPIFn4954NF6M10VrwVjOHIfMN4+AeXrk4E=</latexit> <latexit sha1_base64="4qbB5VPHVJy+X9b30H0kDwplO90=">AB/nicdVDLSgMxFM3UV62vUXHlJlgEV0M607F1V3TjsoJ9QKeUTJpQzMPkoxQhoK/4saFIm79Dnf+jZm2goeuHByzr3k3uMnEmF0IdRWFldW98obpa2tnd298z9g7aMU0Foi8Q8Fl0fS8pZRFuKU67iaA49Dnt+JOr3O/cUSFZHN2qaUL7IR5FLGAEKy0NzCN/gDzJQoiscxd6SU5QbWCWkV36q5zod9V23VcOzc20Y1WLHQHGWwRHNgvnvDmKQhjRThWMpeBSWqn2GhGOF0VvJSRNMJnhEe5pGOKSyn83Xn8FTrQxhEAtdkYJz9ftEhkMp6GvO0OsxvK3l4t/eb1UBfV+xqIkVTQi4+ClEMVwzwLOGSCEsWnmAimN4VkjEWmCidWEmH8HUp/J+0baui+U213LhcxlEx+AEnIEKqIEGuAZN0AIEZOABPIFn4954NF6M10VrwVjOHIfMN4+AeXrk4E=</latexit> <latexit sha1_base64="4qbB5VPHVJy+X9b30H0kDwplO90=">AB/nicdVDLSgMxFM3UV62vUXHlJlgEV0M607F1V3TjsoJ9QKeUTJpQzMPkoxQhoK/4saFIm79Dnf+jZm2goeuHByzr3k3uMnEmF0IdRWFldW98obpa2tnd298z9g7aMU0Foi8Q8Fl0fS8pZRFuKU67iaA49Dnt+JOr3O/cUSFZHN2qaUL7IR5FLGAEKy0NzCN/gDzJQoiscxd6SU5QbWCWkV36q5zod9V23VcOzc20Y1WLHQHGWwRHNgvnvDmKQhjRThWMpeBSWqn2GhGOF0VvJSRNMJnhEe5pGOKSyn83Xn8FTrQxhEAtdkYJz9ftEhkMp6GvO0OsxvK3l4t/eb1UBfV+xqIkVTQi4+ClEMVwzwLOGSCEsWnmAimN4VkjEWmCidWEmH8HUp/J+0baui+U213LhcxlEx+AEnIEKqIEGuAZN0AIEZOABPIFn4954NF6M10VrwVjOHIfMN4+AeXrk4E=</latexit> SCALE VARIATIONS: HOW BIG? ๏ Scale variations induce ‘artificial’ terms beyond truncated order in QFT ~ Allow the calculation to float by (1+O( α s )). Proportionality to α s ( μ ) ⟹ can get a (misleadingly?) small band if you α s ( k 2 1 µ 2 ) 2 µ 2 ) ∼ 1 − b 0 ln( k 2 1 /k 2 2 ) α s ( µ 2 ) choose central μ scale very large. α s ( k 2 E.g., some calculations use μ ~ H T ~ largest scale in event ?! Worth keeping in mind when considering (uncertainty on) central μ choice Flavour-dependent slope of order 1 b 0 ∼ 0 . 65 ± 0 . 07 Expansion around μ only sensible if this stays ≲ 1 ๏ Mainstream view: • Regard scale dependence as unphysical / leftover artefact of our mathematical procedure to perform the calculations. • Dependence on it has to vanish in the ‘ultimate solution’ to QFT • → Terms beyond calculated orders must sum up to at least kill μ dependence • Such variations are thus regarded as a useful indication of the size of uncalculated terms. (Strictly speaking, only a lower bound!) Note: In PYTHIA you specify k 2 Typical choice (in fixed-order calculations) : k ~ [0.5,1,2] TimeShower:renormMultFac SpaceShower:renormMultFac 3 � P ETER S K A NDS M O N ASH U.

Recommend


More recommend