short gamma ray bursts
play

Short Gamma Ray Bursts The MRI print out on the launched jet Time - PowerPoint PPT Presentation

Kostas Sapountzis Center for Theoretical Physics Polish Academy of Science Short Gamma Ray Bursts The MRI print out on the launched jet Time Variability Warsaw 2018 Outline Short GRBs properties The framework MRI


  1. Kostas Sapountzis Center for Theoretical Physics – Polish Academy of Science Short Gamma Ray Bursts The MRI print out on the launched jet – Time Variability Warsaw 2018

  2. Outline ● Short GRBs properties – The framework ● MRI Characteristics ● Initial configuration Useful quantities and simulation characteristics ● Results - Conclusion

  3. Fishman G., Meegan C., 1995, AnRevAstronAstroph, 33 , 415 Kouveliotou et al 1993, ApJ, L, 413 , L101

  4. The general SGRBs Framework Intensively transient phenomena, prompt emission in γ-rays, peak few 100 KeV Isotropic Energy up to 10 54 erg (less if collimated) Highly relativistic (compactness problem), γ>100. Low baryon loading, 10 -5 M O Lei et al, 2013, ApJ, 765 , 125 Two distinct phenomena (duration, hardness, location) Intense variability of the prompt radiation G. A. MacLachlan et al. 2013, MNRAS, 432 , 857 Two candidates of SGRB: BH-NS NS-NS (LIGO,VIRGO,FERMI) Abbott, B. P., et al. "Gravitational Waves and Gamma Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A." 2017, Phys. Rev. Lett. 119 , 161101 Berger E., Focus on the Electromagnetic Counterpart of the Neutron Star Binary Merger GW170817

  5. The zoo of the sGRB progenitors Compact objects binaries outcome NS-NS ● Heavy NS dt =− 2 Ω 3 p m 0 2 Ι =( 2 / 5 ) M R p m = p m, 0 sin Ωt p M | 2 2 dt =− 2 | ¨ dE dΩ 3 I 3 3 c 3 c B = p m 0 2 r + sinθ ^ E = 1 / 2 I Ω ⃗ 3 ( 2 cosθ ^ θ ) 4 π r 3 M 15 G ( B ) 2 3 ( R ) ( 1.4 M ⨀ ) ( 1 ms ) 4 2 Ω 3 c 10 Km 10 M T τ sd = − dΩ / dt = 2 = 1.2 ⋅ 10 s 4 B 2 Ω 5 R ● supramassive NS Rigid Body Rotation (τ~τ sd ) ρ d ⃗ v d t =− ⃗ ∇ P − ρ ⃗ ∇ ρ ( ⃗ ∇ Φ x ' ) 3 x d 3 x' G ρ (⃗ ∬ d x ⃗ x )⃗ x − ⃗ |⃗ x ' | 3 x r , ∫ d ⋅⃗ x − ⃗ x − ⃗ x' ) (⃗ x' )(⃗ x ' ) d 2 ( x 2 ) = 1 1 3 x d 3 x' G ρ (⃗ 2 ∬ d x ) ρ ( ⃗ 2 2 − v x − ⃗ 3 |⃗ x' | 2 dt = 1 3 x ρ (⃗ 2 ∫ d x ) Φ (⃗ x )= W ∫ P ⃗ 3 x ∇⋅⃗ x d 2 1 d 3 x )− 2 ∫ ρv 3 x 2 ( ∫ ρ x 2 d 2 d 3 x = 3 Π 3 ∫ Pd 2 dt 2 I = 1 d 2 − 2 T 2 1 d I 2 dt 2 = 2 T + W + 3 Π P ∝ { ρ ⟩ ∝ { 5 / 3 5 / 3 / R 2 ρ Π = Μ ⟨ Μ 2 dt P → 2 ∝ J 2 T = 1 2 ∝ M R 2 Ω W ∝ G M 2 4 / 3 4 / 3 / R 2 I Ω ρ Μ 2 M R R

  6. The zoo of the sGRB progenitors GM 2 M 4 / 3 GM 2 M 5 / 3 J J Ω c 0 =− α 3 + κ 3 2 + β 3 0 =− α 3 / 2 + κ 3 / 2 2 + β 3 / 2 ^ A : Ω = 1 + ^ 2 / ^ R R R 2 M R M R R 2 sin 2 r A Break up velocity ● HMNS Differential Rotation (winding of poloidal field → toroidal + Alfven waves → angular momentum redistribution) 2 ( B 0 ) ( R ) 1 / 2 ( 3 M ⨀ ) 1 / 2 12 G t A = R 10 20 Km M ∼ 10 s u A BH-NS Individual Object Magnetar Baumgarte T., Shapiro S., Shibata M., 2000, 528 , L29 The result depends on Members Initial State (mass, self-rotation, EOS, B) Details of the merging process ~7% (mass ejection, gravitational waves, ν)

  7. GW170817 – GRB 170817A Δt = ( 1.74 ± 0.5 ) s + 180 KeV E p = 158.1 − 33 46 erg E iso = ( 4.58 ± 0.19 ) 10 high spin prior restriction ( χ < 0.89 ) m 1 = ( 1.81 ± 0.45 ) M ⨀ m 2 = ( 1.11 ± 0.25 ) M ⨀ + 0.47 M ⨀ M tot = 2.82 − 0.09 low spin prior restriction ( χ < 0.05 ) m 1 = ( 1.48 ± 0.12 ) M ⨀ m 2 = ( 1.26 ± 0.10 ) M ⨀ + 0.04 M ⨀ M tot = 2.74 − 0.01 90% credible interval Granot et al 2017, ApJ, 850 , L24 Abbott et al 2017, ApJ, 848 , L13

  8. The MagnetoRotational Instability (MRI) ● A purely HD Keplerian disk is stable, Rayleigh stability criterion ∂ 2 Ω )> 0 ⇒ stable 2 ( R Ω ∝ R − 3 / 2 ∂ R ● The MHD instability due to Balbus & Hawley, 1991 (Velikhov 1959, Chandrasekhar 1960) review. ● Mechanical analogy ● Characteristics 2 − 1 / 2 4 Ω | dΩ z ) λ max = 2 π ( v A dln R | √ ( 4 Ω 2 + κ 2 ) ω max = 1 2 | dΩ 2 2 + d Ω 2 + 2 (⃗ 2 ]+(⃗ 2 [(⃗ 4 − ω 2 [ κ dln R | k ⋅⃗ v A ) k ⋅⃗ v A ) k ⋅⃗ v A ) dlnR ]= 0 ω

  9. The MagnetoRotational Instability (MRI) ● The GR in Kerr Gammie C., 2004, ApJ, 614 , 309 Novikov – Thorne (1973) B = 1 + a circular μ 3 / 2 μ = d x 2 x μ ν λ r d μ dx d x dτ ={ B / √ C, 0 , 0 , 1 / ( r 3 / 2 √ C ) }= u t { 1,0,0, Ω } u 2 =− Γ νλ C = 1 − 3 3 / 2 r + 2 ar dτ dτ dτ 2 D = 1 − 2 r + α Perturbations x 2 x μ d μ → x μ + ξ μ μ u λ ξ μ u ν ξ ν u σ − 2 Γ νλ λ 2 =−∂ σ Γ νλ 2 r dτ 4 ( ω 3 / 2 + 3 a 3 / 2 − 3 a 2 / r 2 2 / r 2 1 − 4 a / r 1 − 6 / r + 8 a / r 2 = 1 2 = 1 2 ) ( ω 2 ) = 0 2 − v 2 − k ξ ∝ e − iωt ω v k 3 3 C C r r Assume a spring: 1 ν Into the Lagrangian: L = 1 ν − 1 μ ˙ 2 g μν ˙ 2 h μν ξ μ ξ 2 h μ ν ξ μ ξ ν 2 γ x x 2 γ 2 x μ 2 ( γ C ) = 0 − iωt d μ u λ ξ μ u ν ξ ξ ∝ e 2 − 3 D ν u σ − 2 Γ νλ λ − γ 2 h ν μ ξ ν 2 ( κ 2 ) + γ 2 =−∂ σ Γ νλ 4 − ω 2 + 2 γ ω 3 dτ r 2 [ (⃗ C ] = 0 2 − 3 D 2 [ κ 2 ] +(⃗ 2 + 2 (⃗ 4 − ω ω k ⋅⃗ v A ) k ⋅⃗ v A ) k ⋅⃗ v A ) 3 r z ) 3 ( C ) 2 2 λ max = 2 π ( v A =− 1 1 D =− 9 2 D 2 2 f ( r ,α ) ω max, τ ω max ,t 16 Ω 16 C Ω r http://www.inp.demokritos.gr/~sbonano/RGTC/

  10. The MagnetoRotational Instability (MRI) Real world (simulations) problems ● Nonlinear coupling of the instability modes: What’s the proper resolution to resolve MRI properly? θ φ = 2 π v A = 2 π v A θ φ Q MRI Q MRI θ φ Ω dx Ω dx Sanot et al. 2004 Hawley J. et al 2011 θ > 6 − 8 Q MRI ● In 3D the situation is even more complicate r ) mid ≤ 4 ( dx θ φ φ / dx Q MRI Q MRI > 200 ● Empirical tests with different resolutions Sanot et al. 2004, ApJ, 605 , 321 Hawley J. et al, 2011, 738 , 84

  11. Simulation Set Up arXiv:1802.02786 ● The disrupted NS as a FM torus (hydro dynamic, steady state) See Fishbone L., Moncrief V., 1976, ApJ, 207 , 962 ● The magnetic field circular wire k = √ A 0 2 ) K ( k 2 )− 2 E ( k 2 ) ( 2 − k 4 R sinθ A φ = √ r 2 2 + R 2 + 2 r R sinθ 2 + R 2 + 2 r Rsinθ k r K,E the complete elliptic functions, R at P max of FM torus, A 0 controls the initial plasma- β ● The ISM density has the lowest value ● System in total not in balance

  12. Simulation Set Up Weakly magn Medium magn Torus radii (r g ) A 0 T MRI ISM density Q MRI Model r in r max t g Harm units Harm units HD-Therm 50 60 1.6 · 10 -9 10 630 9 HD-Mag 50 60 8.6 · 10 -8 200 630 151 MD-Therm 20 25 1.0 · 10 -8 1.6 174 9 MD-Mag 20 25 3.9 · 10 -7 32 174 173 LD-Therm 10 12 4.0 · 10 -8 0.32 61 13 LD-Mag 10 12 2.5 · 10 -7 3.1 61 122

  13. Quantities Connection with SR jet theory μ u ν + 1 μ = μ u ν κ b k u κ b k δ ν μ − b μ b ν Τ ν ρξu + b 2 b ⏟ ⏟ μ μ ( T m ) ν ( T em ) ν Magnetic acceleration beyond finite resolution region ξ : specific enthalpy r σ = ( T em ) t : magnetization parameter r ( T m ) t r T t μ = r : total plasma energy ρu SR Poynting σ = (Thermal+inertial) energy flux μ = Total energy flux mass flux Vlahakis N. & Konigl A. MNRAS, 2003, 596 , 1080 μ = γ ξ ( 1 + σ )

  14. Simulation MD-Mag

  15. Simulation MD-Mag HARM: Gammie C., McKinney J., Toth G, 2003, ApJ, 589 , 444. Noble S., Gammie C. , McKinney, J. C., Del Zanna L., 2006, ApJ, 641 , 626. Gudinov, HLL, Shock capturing, fixed Kerr space α= 0.9 Res: 1020 x 512 hslope: 0.3 Γ = 4/3

  16. (40,200) Snapshots MD-Mag BZ Activity Point of MRI Resolution Ω F = F tθ F θ φ Ω H = α 2 ( 1 + √ 1 − a 2 ) (10,200) Yuang H., Zhang F., Lehner L., Phys. Rev. D, 91 , 124055

  17. Analysis of the results MD

  18. Analysis of the results LD

  19. Analysis of the results HD MRI from shorter radii?

  20. Conclusions ● A well formed jet, intense variable, highly magnetized and of lower density outflow is launched ● MRI is accurately reflected on the time variability of the ejected outflow using the μ ~ γ max quantity ● The MRI print out is more intense at the inner part of the flow ● The Blandford-Znajek BH mechanism is functioning effectively ● The precise characteristic of the initial torus, a new era?

  21. Tia n k y o u f o r y o u r a t t e n t i o n Further Comments – Questions: Kostas Sapountzis ( kostas@cft.edu.pl ) Agnieszka Janiuk (agnes@cft.edu.pl)

Recommend


More recommend