shock wave boundary layer interaction in intakes at
play

Shock wave boundary layer interaction in intakes at incidence - PowerPoint PPT Presentation

Introduction Modeling Test case Intake case References Shock wave boundary layer interaction in intakes at incidence Giacomo Castiglioni, Francesco Montomoli, Joaquim Peir o, Spencer J. Sherwin Department of Aeronautics Imperial College


  1. Introduction Modeling Test case Intake case References Shock wave boundary layer interaction in intakes at incidence Giacomo Castiglioni, Francesco Montomoli, Joaquim Peir´ o, Spencer J. Sherwin Department of Aeronautics Imperial College London g.castiglioni@imperial.ac.uk June 10-12, 2019 Nektar++ Workshop 1/46

  2. Introduction Modeling Test case Intake case References Overview 1 Introduction 2 Modeling 3 Test case 4 Intake case References 5 2/46

  3. Introduction Modeling Test case Intake case References Introduction 3/46

  4. Introduction Modeling Test case Intake case References Motivation Shock wave boundary layer interaction (SWBLI) is a phenomena encountered in many industrial devices (external aero, engine intakes, cascades, nozzles, etc.) and plays a critical role due to its importance for both efficiency and structural integrity, often being the limiting factor to the design envelope. Goal Simulate a simplified, but representative, intake geometry with a high-order, unstructured compressible solver (Nektar++). [KT18] 4/46

  5. Introduction Modeling Test case Intake case References Modeling 5/46

  6. Introduction Modeling Test case Intake case References Nektar++ High fidelity, scale resolving simulations (DNS, uDNS) Framework Spectral h/p element method Unstructured Compressible / Incompressible Target High-Reynolds numbers Complex geometries Transient phenomena www.nektar.info 6/46

  7. Introduction Modeling Test case Intake case References Discontinuous Spectral Element Methods (DSEM) Geometrical flexibility Good dissipation/dispersion properties ‘Natural’ framework for iLES/uDNS Compact schemes 7/46

  8. Introduction Modeling Test case Intake case References Compressible Navier-Stokes equations ∂ q ∂ t + ∇ · ( f ( q ) − g ( q )) = 0 , (1)       ρ ρ u j 0  ,  ,  , q = ρ u i f ( q ) j = ρ u i u j + p δ ij g ( q ) j = τ ij    E ( E + p ) u j u i τ ij − o j (2) p = ρ RT , e = C v T , h = C p T , (3) � ∂ u i + ∂ u j − λ∂ u i � + ζ ∂ u i τ ij = µ δ ij δ ij , (4) ∂ x j ∂ x i ∂ x i ∂ x i o i = − κ∂ T . (5) ∂ x i 3 , ζ = 0, k = C p µ (with λ = 2 Pr ) 8/46

  9. Introduction Modeling Test case Intake case References Laplacian viscosity The RHS of the Navier-Stokes equations is augmented by Laplacian viscosity [PP06] ∇ · ( ε ∇ q ) , (6) for consistency ε ∼ h / p , and from physical considerations ε ∼ λ max = | u | + c [BD10] h ε = ε 0 p λ max S , (7) ε 0 = O (1), S sensor. 9/46

  10. Introduction Modeling Test case Intake case References Physical viscosity Based on a shock sensor artificial shear viscosity and thermal conductivity are added to the physical ones, i.e. µ = µ ph + µ av , ζ = ζ ph + ζ av , κ = κ ph + κ av , (8) Minimal physical viscosity model µ av = µ 0 ρ h p λ max S , (9) C p κ av = µ av Pr , (10) ζ av = 0 . (11) ε 0 = O (1) 10/46

  11. Introduction Modeling Test case Intake case References Resolution based sensor As Shock sensor, a modal resolution-based indicator can be used � � q − ˜ q , q − ˜ q � � s e = log 10 , (12) � q , q � where �· , ·� represents a L 2 inner product, q and ˜ q are the full and truncated expansions of a state variable N ( P ) N ( P − 1) � � q ( x ) = q i φ i , ˆ q ( x ) = ˜ q i φ i , ˆ (13) i =1 i =1 constant element-wise sensor  0 , s e ≤ s k − k ,   � � 1 + sin π ( s e − s k ) 1 S ε = , | s e − s k | ≤ k , (14) 2 2 k s e ≥ s k + k ,  1 ,  s k ∼ log 10 ( p 4 ) (from Fourier coefficients decaying as 1 / p 2 ). 11/46

  12. Introduction Modeling Test case Intake case References Vorticity sensor The aim is to avoid excessive dissipation in regions of high vorticity Ducros’ sensor ( ∇ · u ) 2 S ω = ( ∇ · u ) 2 + |∇ × u | 2 + ε, (15) then the applied sensor becomes S = S ε S ω , (16) 12/46

  13. Introduction Modeling Test case Intake case References Smoothing operators Ducros’ sensor should be 0 ≤ S ω ≤ 1 AV should be strictly positive element-wise constant AV might induce oscillations Strategy Average Ducros’ sensor over an element Compute AV Approximate C 0 projection of AV 13/46

  14. Introduction Modeling Test case Intake case References Soft max function e Ka + e Kb � � Smax ( a , b ) = log , (17) K 10 0 10 − 1 10 − 2 10 − 3 x min 10 − 4 10 − 5 10 − 6 10 − 7 10 − 8 10 − 11 10 − 9 10 − 7 10 − 5 10 − 3 10 − 1 x Applied to pressure Allows for the Riemann solver to work through negative pressure oscillations 14/46

  15. Introduction Modeling Test case Intake case References Test case 15/46

  16. Introduction Modeling Test case Intake case References Test case SWBLI studied experimentally and numerically by Degrez et al. [DBW87]. Conditions M = 2 . 15, β = 30 . 8, p 0 = 1 . 07 × 10 4 Pa , T 0 = 293 K , Re x sh = 10 5 , Pr = 0 . 72. 16/46

  17. Introduction Modeling Test case Intake case References Setup The inflow boundary is located at x = 0 . 3 x sh where the analytical compressible boundary layer solution [WC06] is imposed. Rankine-Hugoniot relations are added to impose the shock. 17/46

  18. Introduction Modeling Test case Intake case References Mesh and Mach number field 120 × 40 elements p = 4 18/46

  19. Introduction Modeling Test case Intake case References Cases considered no AV AV AV + Ducros AV + C 0 AV + Ducros + C 0 19/46

  20. Introduction Modeling Test case Intake case References Pressure and skin friction distribution (no AV) 1 . 6 0 . 004 1 . 5 0 . 003 1 . 4 p/p min 0 . 002 1 . 3 C f 1 . 2 0 . 001 1 . 1 0 . 000 1 . 0 − 0 . 001 0 . 9 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 x/x sh x/x sh Blue line DIRK-2; Red line SSP RK-2; Circles [DBW87]; triangles [BRCD06]; dotted line is empirical solution by [Eck55] for C f or the Rankine-Hugoniot relations for p . 20/46

  21. Introduction Modeling Test case Intake case References Density at horizontal line (no AV) y/x sh = 0 . 1 1 . 4 1 . 3 ρ/ρ ∞ 1 . 2 1 . 1 1 . 0 0 . 25 0 . 50 0 . 75 1 . 00 1 . 25 1 . 50 1 . 75 2 . 00 x/x sh Blue line DIRK2; Red line SSP RK2; Simulation is stable Non-physical oscillations 21/46

  22. Introduction Modeling Test case Intake case References AV case 1 . 6 0 . 004 1 . 5 0 . 003 1 . 4 p/p min 0 . 002 1 . 3 C f 1 . 2 0 . 001 1 . 1 0 . 000 1 . 0 − 0 . 001 0 . 9 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 y/x sh = 0 . 1 x/x sh x/x sh 1 . 3 Black line no AV SSP RK2; Blue line DIRK2; Red line SSP RK2 ρ/ρ ∞ 1 . 2 Non-physical oscillations reduced Challenging to add dissipation only to the 1 . 1 shock! s k = 0 . 25, k = 0 . 75 1 . 0 0 . 8 1 . 0 1 . 2 x/x sh 22/46

  23. Introduction Modeling Test case Intake case References Effects of anti-vorticity sensor and smoothing The Ducros’ sensor lowers the artificial viscosity in regions that have low resolution and high vorticity (small effect in laminar case) 23/46

  24. Introduction Modeling Test case Intake case References Ducros case (AV+Ducros) 1 . 6 0 . 004 1 . 5 0 . 003 1 . 4 p/p min 0 . 002 1 . 3 C f 1 . 2 0 . 001 1 . 1 0 . 000 1 . 0 − 0 . 001 0 . 9 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 y/x sh = 0 . 1 x/x sh x/x sh Black line no AV SSP RK2 1 . 3 Blue line DIRK2; Red line SSP RK2 ρ/ρ ∞ 1 . 2 Non-physical oscillations are almost gone 1 . 1 Still difficult to find stable AV parameters 1 . 0 s k = 0 . 00, k = 0 . 75 0 . 8 1 . 0 1 . 2 x/x sh 24/46

  25. Introduction Modeling Test case Intake case References Smoothing only case (AV+C0) 1 . 6 0 . 004 1 . 5 0 . 003 1 . 4 p/p min 0 . 002 1 . 3 C f 1 . 2 0 . 001 1 . 1 0 . 000 1 . 0 − 0 . 001 0 . 9 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 y/x sh = 0 . 1 x/x sh x/x sh 1 . 3 Black line no AV SSP RK2 ρ/ρ ∞ 1 . 2 Blue line DIRK2; Red line SSP RK2 Shock tube param for AV 1 . 1 Non-physical oscillations are gone 1 . 0 0 . 8 1 . 0 1 . 2 x/x sh 25/46

  26. Introduction Modeling Test case Intake case References Ducros and smoothing case (AV+Ducros+C0) 1 . 6 0 . 004 1 . 5 0 . 003 1 . 4 p/p min 0 . 002 1 . 3 C f 1 . 2 0 . 001 1 . 1 0 . 000 1 . 0 − 0 . 001 0 . 9 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 y/x sh = 0 . 1 x/x sh x/x sh Black line no AV SSP RK2 1 . 3 Blue line DIRK2; Red line SSP RK2 ρ/ρ ∞ 1 . 2 Non-physical oscillations are gone 1 . 1 Shock tube param for AV Ducros’ sensor has little effect 1 . 0 (laminar flowfield) 0 . 8 1 . 0 1 . 2 x/x sh 26/46

  27. Introduction Modeling Test case Intake case References Flat plate summary Good quantitative agreement for 2D laminar SWBLI C 0 smoothing increases robustness and decrease influence of AV parameters C 0 smoothing allows for a ‘sharper’ AV Ducros’ sensor helps less than C 0 smoothing (laminar flowfield) 27/46

  28. Introduction Modeling Test case Intake case References Intake case 28/46

  29. Introduction Modeling Test case Intake case References Inviscid case, Mach number distribution Mach = 0 . 435, α = 23 . 15. Total pressure is imposed at the inlet, static pressure at the outlet. 29/46

Recommend


More recommend