sequences structures shapes and conformations
play

Sequences, structures, shapes, and conformations Peter Schuster - PowerPoint PPT Presentation

Sequences, structures, shapes, and conformations Peter Schuster Institut fr Theoretische Chemie, Universitt Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA RNA 2006 Benasque, 17. 27.07.2006 Web-Page for further


  1. Sequences, structures, shapes, and conformations Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA RNA 2006 Benasque, 17.– 27.07.2006

  2. Web-Page for further information: http://www.tbi.univie.ac.at/~pks

  3. tRNA phe : sequence and molecular structure

  4. tRNA phe : secondary structure is a shape

  5. N = 4 n N S < 3 n Criterion: Minimum free energy (mfe) Rules: _ ( _ ) _ � { AU , CG , GC , GU , UA , UG } A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs

  6. Sequence space

  7. CGTCGTTACAATTTA GTTATGTGCGAATTC CAAATT AAAA ACAAGAG..... G A G T CGTCGTTACAATTTA GTTATGTGCGAATTC CAAATT AAAA ACAAGAG..... A C A C Hamming distance d (I ,I ) = 4 H 1 2 (i) d (I ,I ) = 0 H 1 1 (ii) d (I ,I ) = d (I ,I ) H 1 2 H 2 1 � (iii) d (I ,I ) d (I ,I ) + d (I ,I ) H 1 3 H 1 2 H 2 3 The Hamming distance between sequences induces a metric in sequence space

  8. Every point in sequence space is equivalent Sequence space of binary sequences with chain length n = 5

  9. Sequence space and structure space

  10. Hamming distance d (S ,S ) = 4 H 1 2 (i) d (S ,S ) = 0 H 1 1 (ii) d (S ,S ) = d (S ,S ) H 1 2 H 2 1 � (iii) d (S ,S ) d (S ,S ) + d (S ,S ) H 1 3 H 1 2 H 2 3 The Hamming distance between structures in parentheses notation forms a metric in structure space

  11. Two measures of distance in shape space: Hamming distance between structures, d H (S i ,S j ) and base pair distance, d P (S i ,S j )

  12. Structures are not equivalent in structure space Sketch of structure space

  13. ? ? ?

  14. Compatible structures � Suboptimal conformations

  15. Reference for the definition of the intersection and the proof of the intersection theorem

  16. Structure S k G k Neutral Network � G k C k Compatible Set C k The compatible set C k of a structure S k consists of all sequences which form S k as its minimum free energy structure (the neutral network G k ) or one of its suboptimal structures.

  17. Structure S 0 Structure S 1 The intersection of two compatible sets is always non empty: C 0 � C 1 � �

  18. Kinetic folding of RNA as a Markow process

  19. Kinetic folding of RNA as a Markow process

  20. Kinetic folding of RNA as a Markow process

  21. Kinetic folding of RNA as a Markow process

  22. Kinetic folding of RNA as a Markow process

  23. Kinetic folding of RNA as a Markow process

  24. Kinetic folding of RNA as a Markow process

  25. Kinetic folding of RNA secondary structures Christoph Flamm, Walter Fontana, Ivo L. Hofacker, Peter Schuster. RNA folding kinetics at elementary step resolution. RNA 6 :325-338, 2000 Christoph Flamm, Ivo L. Hofacker, Sebastian Maurer-Stroh, Peter F. Stadler, Martin Zehl. Design of multistable RNA molecules. RNA 7 :325-338, 2001 Michael T. Wolfinger, W.Andreas Svrcek-Seiler, Christoph Flamm, Ivo L. Hofacker, Peter F. Stadler. Efficient computation of RNA folding dynamics . J.Phys.A: Math.Gen. 37 :4731- 4741, 2004

  26. Corresponds to base pair distance : d P ( S 1 , S 2 ) Base pair formation and base pair cleavage moves for nucleation and elongation of stacks

  27. Base pair closure, opening and shift corresponds to Hamming distance: d H ( S 1 , S 2 ) Base pair shift move of class 1: Shift inside internal loops or bulges

  28. Base pair shift Class 2 Base pair closure, opening and shift corresponds to Hamming distance: d H ( S 1 , S 2 ) Base pair shift move of class 2: Shift involves free ends

  29. The kinetic folding algorithm A sequence X specifies an energy ordered set of compatible structures S ( X ): S ( X ) = {S 0 , S 1 , … , S m-1 , O } A trajectory T k ( X ) is a time ordered series of structures in S ( X ). A folding trajectory is defined by starting with the open chain O and ending with the global minimum free energy structure, S 0 or a metastable structure S k , which represents a local energy minimum: T 0 ( X ) = { O , S (1) , … , S (t-1) , S (t) , S (t+1) , … , S 0 } T k ( X ) = { O , S (1) , … , S (t-1) , S (t) , S (t+1) , … , S k } A description of the folding process is obtained through sampling a large number of trjectories. Formulation of kinetic RNA folding as a When no stopping structure, S 0 or S k , is defined, the long time stochastic process distribution of conformations is the Boltzmann ensemble.

  30. Folding dynamics of the sequence GGCCCCUUUGGGGGCCAGACCCCUAAAAAGGGUC

  31. Stochastic variables : N ( ) number of molecules with conformati on L t S j j ∑ = = = ( ) ( ) Probabilit ies : j ( ) Prob { N ( ) j } with N ( ) P t t n t N j j n j ∑ = < > = N = ( ) ( ) j j Expectatio n values : ( ) ( ) ( ) N t n n P t p t = j n j 0 n { ( ) } ( ) j ( ) m dP t ∑ = + + − + = ( ) ( ) ( ) j j j ( ) ( ) ( 1 ) ( ) ( ) ( ) n P t P t k n P t k n P t P t − + l 1 1 l l j n jl n j j n dt = ≠ 0 , l l j { ( ) } { ( ) } m m ∑ ∑ ∑ ∑ = N − + + − + N ( l , 1 ) ( ) ( ) ( ) ( l , ) n j j j n ( 1 ) k i P P k n P P k n k i P − + l 1 l 1 l l = = j i n j n n j j i 0 0 i i = ≠ = ≠ 0 , 0 , l l l l j j = , 0 , 1 , 2 , , and K n i N = → ± ∆ = ± , l 0 , 1 , K , ; single step : 1 ( , ) or 1 (, 0 ) j m n n n n = → ≤ τ ≤ + Transition probabilit ies : ( ) Prob { | } P t dt S S t t dt l l j j N ∑ = − = < > = − ( l , 1 ) ( l ) ( 1 ) ( ) n ( ) n ( ) P t k i P t k n k p t l l l l l j j i j j = 0 i ( ) m ( ) ∑ = − ∆ − ∆ ∆ = ∆ − ∆ 0 0 with exp / exp / and k k G RT G RT G G G 0 l l l l l j j k j j = ≠ 0 , l k k

  32. { ( ) } ( ) j N dp N m dP ∑ ∑ ∑ − = = + + − + ( 1 ) ( ) ( ) ( ) ( ) j n j ( 1 ) j n j n n k p P k n P k n k p P − + 1 1 l l l l l l j n j n j j n dt dt = = = ≠ 0 0 l 0 , l n n j dp ∑ ∑ m m = − = j ; 0 , 1 , 2 , K , k p p k j m l l l = ≠ j j = ≠ j l 0 , l l 0 , l j j dt

  33. 0 Free energy G � T { k 0 G � y g r e n e e e r F S { S { Saddle point T { k S k S k "Barrier tree" "Reaction coordinate" Definition of a ‚barrier tree‘

  34. R 1D 2D GGGUGGAAC CACGAG GUUC CACGAG GAAC CACGAG GUUCCUCCC G 3 13 23 33 44 R 1D 2D 23 13 33 C G C G C G A A A A G/ A A C G C C G G G C G C G C A U A U U A U A A U A U G C G C G C G C G C G C A A U A /G A U G C 13 3 G C G CCC 44 1D 2D C G 33 GG 23 R 5' 3’ A A C G C G -1 -28.6 kcal·mol A U A U -1 -28.2 kcal·mol G C G C U U G C 3 G C An RNA switch G C 44 5' 3’ JN1LH -1 -28.6 kcal·mol J.H.A. Nagel, C. Flamm, I.L. Hofacker, K. Franke, -1 -31.8 kcal·mol M.H. de Smit, P. Schuster, and C.W.A. Pleij. Structural parameters affecting the kinetic competition of RNA hairpin formation, Nucleic Acids Res. 34 :3568-3576, 2006 .

  35. -26.0 2.89 -28.0 4.88 -30.0 6.8 6.13 3.04 3.04 2.97 -32.0 Free energy [kcal / mole] 1.47 1.49 2.14 2.14 2.14 2.51 2.51 50 49 47 46 48 -34.0 45 44 43 1.9 41 40 42 38 39 36 35 37 34 33 32 1 0 8 9 3 3 6 27 2 25 24 2 3 2 -36.0 1 22 2 20 19 2 8 1.66 1 7 6 1 1 5 1 4 3 1.44 2 -38.0 1.46 1 1 1 11 2.44 10 2.09 2.36 -40.0 3.4 9 8 7 -42.0 2.44 5 6 2.44 4 -44.0 5.32 3 -46.0 -48.0 2 2.77 J1LH barrier tree -50.0 1

  36. A ribozyme switch E.A.Schultes, D.B.Bartel, Science 289 (2000), 448-452

  37. Two ribozymes of chain lengths n = 88 nucleotides: An artificial ligase ( A ) and a natural cleavage ribozyme of hepatitis- � -virus ( B )

  38. The sequence at the intersection : An RNA molecules which is 88 nucleotides long and can form both structures

  39. Two neutral walks through sequence space with conservation of structure and catalytic activity

  40. Acknowledgement of support Fonds zur Förderung der wissenschaftlichen Forschung (FWF) Projects No. 09942, 10578, 11065, 13093 13887, and 14898 Universität Wien Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF) Project No. Mat05 Jubiläumsfonds der Österreichischen Nationalbank Project No. Nat-7813 European Commission: Contracts No. 98-0189, 12835 (NEST) Austrian Genome Research Program – GEN-AU Siemens AG, Austria Universität Wien and the Santa Fe Institute

Recommend


More recommend