seismic multi axial behavior of concrete filled steel
play

Seismic Multi Axial Behavior of Concrete Filled Steel Tube Beam - PowerPoint PPT Presentation

Seismic Multi Axial Behavior of Concrete Filled Steel Tube Beam Columns Mark Denavit Tiziano Perea Jerome F. Hajjar Roberto T. Leon University of Illinois at Urbana Champaign Georgia Institute of Technology Urbana, Illinois Atlanta,


  1. Seismic Multi ‐ Axial Behavior of Concrete ‐ Filled Steel Tube Beam ‐ Columns Mark Denavit Tiziano Perea Jerome F. Hajjar Roberto T. Leon University of Illinois at Urbana ‐ Champaign Georgia Institute of Technology Urbana, Illinois Atlanta, Georgia Sponsors: National Science Foundation American Institute of Steel Construction Georgia Institute of Technology University of Illinois at Urbana ‐ Champaign August 14, 2009

  2. Introduction • NEESR ‐ II: System Behavior Factors for Composite and Mixed Structural Systems • Analytical Investigation – Following prior work focusing on RCFT members and extending to CCFT and SRC members – Three ‐ dimensional distributed plasticity mixed beam element formulation – Comprehensive uniaxial cyclic constitutive models for concrete core and steel tube – Parametric Studies • Developing rational system response factors (ATC ‐ 63) • Investigations of beam ‐ column strength • Establishing guidelines for the computation of equivalent composite beam ‐ column rigidity to be used in seismic analysis and design of composite frames • Experimental Investigation

  3. Element Formulation • Three ‐ dimensional distributed plasticity mixed beam element formulation • Mixed basis allows for accurate analysis of material and geometric nonlinearity • Interpolation functions for both element displacements and forces • Formulated in the corotational frame • Implemented within the OpenSees framework • Suitable for static and dynamic analyses • Utilizes built in coordinate transformations and sections

  4. Concrete Backbone Curve Backbone curve in tension and compression Increasing post ‐ peak 100 based on the model by Tsai (1988) degradation with 80 Compression: increasing f’c Stress (MPa) [ ] [ ] f ′ 60 • Initial stiffness: = 3/8 E MPa 8,200 MPa c c ⎛ ⎞ 7.94 f f 40 ′ ′ = − + + − • Peak stress: ⎜ ⎟ l l f f 1.254 2.254 1 2 ⎜ ⎟ ′ ′ cc c f f ⎝ ⎠ c c f'c = 50 MPa; D/t = 50 20 f'c = 60 MPa; D/t = 50 2 = α – Confinement Pressure: f F D t f'c = 70 MPa; D/t = 50 θ − l y 2 f'c = 80 MPa; D/t = 50 f'c = 90 MPa; D/t = 50 0 ( ) α = − ≥ – Hoop Stress Ratio: f'c = 100 MPa; D/t = 50 0.138 0.00174 D t 0 θ 0 0.005 0.01 0.015 0.02 0.025 0.03 Strain (mm/mm) ( ) ( ) • Strain at peak stress: ′ ′ ′ ε = ε + − 70 1 5 f f 1 cc c cc c Post peak factor r : 60 • [ ] ′ ′ ⎧ − ε > ε 50 ⎪ f MPa 5.2 1.9 for − c cc = ⎨ r ) ( ) Increasing ( + ′ ε ≤ ε ′ ⎪ 0.4 0.016 D t f F for 40 ⎩ Stress (MPa) c y cc strength with decreasing D/t 30 20 Increasing post ‐ peak f'c = 50 MPa; D/t = 30 10 f'c = 50 MPa; D/t = 40 degradation with f'c = 50 MPa; D/t = 50 increasing D/t f'c = 50 MPa; D/t = 60 0 f'c = 50 MPa; D/t = 70 f'c = 50 MPa; D/t = 80 -10 0 0.005 0.01 0.015 0.02 0.025 0.03 Strain (mm/mm)

  5. Steel Backbone Curve Plasticity model based on the incremental bounding surface formulation by Shen et 600 al. (1995) with modifications for CCFT Fy = 500 MPa; D/t = 30 Fy = 500 MPa; D/t = 60 Fy = 500 MPa; D/t = 90 members 400 Fy = 500 MPa; D/t = 120 Fy = 500 MPa; D/t = 150 F Local Buckling: D 200 = y R Stress (MPa) t E s 0 ( ) − ε = ε • Strain at initial local buckling: 1.413 0.2139 R lb y -200 ( ) ⎧ > = f R / R for R R 0.17 • Residual stress: = ⎨ lb crit crit f rs ⎩ f otherwise -400 lb • Degradation slope: E K = − s s -600 30 -0.04 -0.03 -0.02 -0.01 0 0.01 Strain (mm/mm) Residual Stresses: Decreasing Decreasing local residual stress buckling strain with increasing • Initial plastic Strain: 0.0006 with increasing D/t D/t

  6. CCFT Model Validation 8000 1200 Yoshioka et al. 1995 7000 CC4 ‐ D ‐ 4 1000 6000 Yoshioka et al 1995 800 CC4 ‐ A ‐ 4 5000 Force (kN) Force (kN) F y = 283 MPa 4000 600 f’ c = 40.5 MPa D/t = 50.4 F y = 283 MPa 3000 400 L/D = 3.00 f’ c = 40.5 MPa 2000 D/t = 152 200 L/D = 3.00 Experiment Experiment 1000 Analysis Analysis 0 0 0 0.01 0.02 0.03 0.04 0.05 0.06 0 0.01 0.02 0.03 0.04 0.05 0.06 Strain (mm/mm) Strain (mm/mm) 3500 2500 Experiment Analysis 3000 2000 O’Shea & Bridge 2500 2000 Force (kN) Force (kN) 1500 R12CF1 2000 Han & Yao 2004 scv2 ‐ 1 1500 F y = 303 MPa 1000 F y = 203 MPa f’ c = 58.5 MPa 1000 f’ c = 110 MPa D/t = 66.7 500 D/t = 171 L/D = 3.00 500 Experiment L/D = 3.48 Analysis 0 0 0 0.002 0.004 0.006 0.008 0.01 0.012 0 0.01 0.02 0.03 0.04 Strain (mm/mm) Strain (mm/mm)

  7. CCFT Model Validation 8 700 7 600 6 500 Wheeler & Bridge 2004 Moment (kN-m) Moment (kN-m) 5 TBP005 400 F y = 351 MPa Elchalakani et al. 2001 4 f’ c = 48.0 MPa CBC0 ‐ C 300 D/t = 71.3 3 F y = 400 MPa L/D = 8.33 200 f’ c = 23.4 MPa 2 D/t = 110 Experiment 100 1 Experiment L/D = 7.28 Analysis Analysis 0 0 0 2 4 6 8 0 20 40 60 80 100 120 Curvature (rad/mm) -4 Mid-Span Deflection (mm) x 10 12 500 10 400 Wheeler & Bridge 2004 Moment (kN-m) 8 Moment (kN-m) TBP002 300 Elchalakani et al 2001 F y = 351 MPa 6 CBC6 f’ c = 40.0 MPa 200 D/t = 63.4 4 F y = 456 MPa L/D = 2.96 f’ c = 23.4 MPa 100 D/t = 23.5 2 Experiment Experiment L/D = 10.5 Analysis Analysis 0 0 0 0.5 1 1.5 0 20 40 60 80 Curvature (rad/mm) -3 Mid-Span Deflection (mm) x 10

  8. CCFT Model Validation 600 300 Kilpatrick & Rangan 1999 500 250 SC ‐ 0 Matsui & Tsuda 1996 400 200 C4 ‐ 5 Load (kN) Load (kN) F y = 414 MPa 300 f’ c = 31.9 MPa 150 F y = 435 MPa D/t = 36.7 f’ c = 58.0 MPa L/D = 4.0 200 100 D/t = 34.5 e/D = 0.625 L/D = 10.6 100 50 Experiment e/D = 0.197 Experiment Analysis Analysis 0 0 0 5 10 15 20 0 10 20 30 40 50 60 Mid-Height Deflection (mm) Mid-Height Deflection (mm) Kilpatrick & Rangan 1999 1200 200 SC ‐ 14 Matsui & Tsuda 1996 1000 C12 ‐ 1 150 800 Load (kN) Load (kN) F y = 410 MPa 600 100 f’ c = 58 MPa F y = 414 MPa D/t = 42.4 f’ c = 31.9 MPa 400 L/D = 19.1 D/t = 36.7 50 e/D = 0.393 L/D = 12.0 200 e/D = 0.125 Experiment Experiment Analysis Analysis 0 0 0 20 40 60 80 100 0 20 40 60 80 100 Mid-Height Deflection (mm) Mid-Height Deflection (mm)

  9. CCFT Model Validation 400 35 350 30 300 25 Nishiyama et al. 2002 Moment (kN-m) Moment (kN-m) 250 EC4 ‐ A ‐ 4 ‐ 035 Ichinohe et al 1991 20 C06F3M 200 F y = 420 MPa 15 F y = 283 MPa 150 f’ c = 64.3 MPa f’ c = 39.9 MPa 10 D/t = 51.5 D/t = 50.7 100 P/P o = 0.30 P/P o = 0.35 5 Experiment Experiment 50 L/D = 2.0 L/D = 3.0 Analysis Analysis 0 0 0 1 2 3 4 5 6 0 1 2 3 4 5 6 Curvature (1/mm) Curvature (1/mm) -4 -4 x 10 x 10 400 300 Nishiyama et al. 2002 350 EC4 ‐ D ‐ 4 ‐ 06 250 300 Nishiyama et al. 2002 EC8 ‐ C ‐ 4 ‐ 03 Moment (kN-m) Moment (kN-m) 200 250 F y = 834 MPa f’ c = 40.7 MPa 200 150 D/t = 34.3 F y = 283 MPa 150 P/P o = 0.30 f’ c = 40.7 MPa 100 L/D = 3.0 D/t = 152 100 P/P o = 0.60 50 Experiment Experiment 50 L/D = 3.0 Analysis Analysis 0 0 0 1 2 3 4 5 6 0 1 2 Curvature (1/mm) Curvature (1/mm) -5 -4 x 10 x 10

  10. Cyclic Behavior Concrete Steel Test #3; Marson & Bruneau 2004; Specimen: CFST 64 400 Rule based model by Cyclic plasticity model Horizontal Force (kN) 200 by Shen et al. Chang and Mander (1994) (1995) 0 -200 • Elastic unloading Experiment Analysis • Decreasing elastic zone -400 Smooth nonlinear -8 -6 -4 -2 0 2 4 6 8 Percent Drift • Bauschinger effect unloading, 1000 Bounding stiffness • Base Moment (kN-m) reloading, and Local buckling 500 transition curves degradation 0 κ = γ κ • Elastic range: -500 Experiment κ reduced Analysis • Cyclic tension ⎛ ⎞ -1000 p W -8 -6 -4 -2 0 2 4 6 8 γ = ⎜ − ⎟ ≥ • Opening and closing of 1 15 R 0.05 Percent Drift ⎜ ⎟ k F ⎝ ⎠ Response of Extreme Steel Fiber Response of Extreme Concrete Fiber cracks y 600 Analysis 0 400 Stress (MPa) Stress (MPa) = γ p p E E -10 Plastic modulus: • 200 reduced p E -20 0 ⎛ ⎞ p W γ = ⎜ − ⎟ ≥ -200 -30 1 10 R 0.05 ⎜ ⎟ p E F ⎝ ⎠ -400 -40 Analysis y -0.05 0 0.05 0.1 -0.05 0 0.05 0.1 Strain (mm/mm) Strain (mm/mm) D = 406 mm; t = 5.50 mm; f’ c = 37 MPa; F y = 449 MPa; L = 2,200 mm; P = 1,000 kN

  11. Cyclic Model Validation Test #3; Elchalakani & Zhao 2008; Specimen: F04I1 Test #7; Elchalakani & Zhao 2008; Specimen: F14I3 8 8 6 6 4 4 Moment (kN-m) Moment (kN-m) 2 2 0 0 -2 -2 -4 -4 -6 -6 Experiment Experiment Analysis Analysis -8 -8 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 End Rotation (rad) End Rotation (rad) Response of Extreme Steel Fiber Response of Extreme Concrete Fiber Response of Extreme Steel Fiber Response of Extreme Concrete Fiber 500 Analysis Analysis 400 0 0 Stress (MPa) Stress (MPa) Stress (MPa) Stress (MPa) 200 -10 -10 0 0 -20 -200 -20 -30 Analysis Analysis -400 -500 -0.01 0 0.01 -5 0 5 10 15 -0.01 0 0.01 0.02 -0.01 0 0.01 0.02 Strain (mm/mm) Strain (mm/mm) Strain (mm/mm) Strain (mm/mm) -3 x 10 D = 110 mm; t = 1.25 mm; f’ c = 23.1 MPa; F y = 430 MPa D = 89.3 mm; t = 2.52 mm; f’ c = 23.1 MPa; F y = 378 MPa L = 800 mm L = 800 mm

Recommend


More recommend