security evaluation and enhancement of bistable ring pufs
play

Security Evaluation and Enhancement of Bistable Ring PUFs RFIDSec, - PowerPoint PPT Presentation

Security Evaluation and Enhancement of Bistable Ring PUFs RFIDSec, June 23, 2015 (1) , Ulrich Rhrmair (2) Xiaolin Xu (1) and Wayne Burleson (1) Daniel Holcomb (1) UMass Amherst (2) HGI, U Bochum This material is based upon work supported


  1. Security Evaluation and Enhancement of 
 Bistable Ring PUFs RFIDSec, June 23, 2015 (1) , Ulrich Rührmair (2) Xiaolin Xu (1) and Wayne Burleson (1) Daniel Holcomb (1) UMass Amherst (2) HGI, U Bochum This material is based upon work supported by: NSF CNS-0964641 and SRC task 1836.074 Its contents are solely the responsibility of the authors and do not necessarily represent the official views of SRC or NSF.

  2. Outline ● Background • PUFs • Modeling attacks on PUFs • Bistable Ring PUF ● Security Evaluation of BR PUFs • Modeling the BR PUF • Results against BR PUF and variants ● Security Enhancement of BR PUFs • XORing BR PUFs to enhance the security • Impact on other PUF parameters ● Conclusion and future work 2 Security of Bistable Ring PUF RFIDsec 2015

  3. Physical Unclonable Functions • Map challenges to responses according to physical variations • Security applications include key storage and authentication Challenges Responses f 3 Security of Bistable Ring PUF RFIDsec 2015

  4. Physical Unclonable Functions • Map challenges to responses according to physical variations • Security applications include key storage and authentication Challenges Responses f PUF Characterized by Challenge- Response Pairs (CRPs) • Exponential challenge space • Modeling attacks should not be possible 3 Security of Bistable Ring PUF RFIDsec 2015

  5. PUFs and Modeling Attacks 0 0 0 0 Q S 1 1 1 1 … 1 1 1 1 R 0 0 0 0 (7) G. Becker, CHES 2015 (1) D. Lim. MSc Thesis, MIT, 2004 (3) M. Majzoobi, et al. ICCAD 2008 (5) G. Suh et al. DAC 2007 (8) Schuster et al., TRUST 2015 (2) U. Rührmair, et al, T-IFS, 2013 (4) U. Rührmair, et al, CHES 2014 (6) U. Rührmair, et al, CCS 2010 4 Security of Bistable Ring PUF RFIDsec 2015

  6. PUFs and Modeling Attacks 0 0 0 0 Q S 1 1 1 1 … 1 1 1 1 R 0 0 0 0 0 0 … 0 0 • Challenges: C i ∈ 2 n (n= num stages) (7) G. Becker, CHES 2015 (1) D. Lim. MSc Thesis, MIT, 2004 (3) M. Majzoobi, et al. ICCAD 2008 (5) G. Suh et al. DAC 2007 (8) Schuster et al., TRUST 2015 (2) U. Rührmair, et al, T-IFS, 2013 (4) U. Rührmair, et al, CHES 2014 (6) U. Rührmair, et al, CCS 2010 4 Security of Bistable Ring PUF RFIDsec 2015

  7. PUFs and Modeling Attacks 0 0 0 0 Q S 1 1 1 1 … 1 1 1 1 R 0 0 0 0 0 0 … 0 0 • Challenges: C i ∈ 2 n (n= num stages) (7) G. Becker, CHES 2015 (1) D. Lim. MSc Thesis, MIT, 2004 (3) M. Majzoobi, et al. ICCAD 2008 (5) G. Suh et al. DAC 2007 (8) Schuster et al., TRUST 2015 (2) U. Rührmair, et al, T-IFS, 2013 (4) U. Rührmair, et al, CHES 2014 (6) U. Rührmair, et al, CCS 2010 4 Security of Bistable Ring PUF RFIDsec 2015

  8. PUFs and Modeling Attacks 0 0 0 0 Q S 1 1 1 1 … 1 1 1 1 R 0 0 0 0 Q=1 0 0 … 0 0 voltage S R • Challenges: C i ∈ 2 n (n= num stages) • Responses: r i ∈ {0,1} (n=1 shown) time (7) G. Becker, CHES 2015 (1) D. Lim. MSc Thesis, MIT, 2004 (3) M. Majzoobi, et al. ICCAD 2008 (5) G. Suh et al. DAC 2007 (8) Schuster et al., TRUST 2015 (2) U. Rührmair, et al, T-IFS, 2013 (4) U. Rührmair, et al, CHES 2014 (6) U. Rührmair, et al, CCS 2010 4 Security of Bistable Ring PUF RFIDsec 2015

  9. PUFs and Modeling Attacks 0 0 0 0 Q S 1 1 1 1 … 1 1 1 1 R 0 0 0 0 Q=1 voltage S R • Challenges: C i ∈ 2 n (n= num stages) • Responses: r i ∈ {0,1} (n=1 shown) time (7) G. Becker, CHES 2015 (1) D. Lim. MSc Thesis, MIT, 2004 (3) M. Majzoobi, et al. ICCAD 2008 (5) G. Suh et al. DAC 2007 (8) Schuster et al., TRUST 2015 (2) U. Rührmair, et al, T-IFS, 2013 (4) U. Rührmair, et al, CHES 2014 (6) U. Rührmair, et al, CCS 2010 4 Security of Bistable Ring PUF RFIDsec 2015

  10. PUFs and Modeling Attacks 0 0 0 0 Q S 1 1 1 1 … 1 1 1 1 R 0 0 0 0 Q=1 0 1 … 1 0 voltage S R • Challenges: C i ∈ 2 n (n= num stages) • Responses: r i ∈ {0,1} (n=1 shown) time (7) G. Becker, CHES 2015 (1) D. Lim. MSc Thesis, MIT, 2004 (3) M. Majzoobi, et al. ICCAD 2008 (5) G. Suh et al. DAC 2007 (8) Schuster et al., TRUST 2015 (2) U. Rührmair, et al, T-IFS, 2013 (4) U. Rührmair, et al, CHES 2014 (6) U. Rührmair, et al, CCS 2010 4 Security of Bistable Ring PUF RFIDsec 2015

  11. PUFs and Modeling Attacks 0 0 0 0 Q S 1 1 1 1 … 1 1 1 1 R 0 0 0 0 Q=1 0 1 … 1 0 voltage S R • Challenges: C i ∈ 2 n (n= num stages) • Responses: r i ∈ {0,1} (n=1 shown) time Q=0 R S voltage time (7) G. Becker, CHES 2015 (1) D. Lim. MSc Thesis, MIT, 2004 (3) M. Majzoobi, et al. ICCAD 2008 (5) G. Suh et al. DAC 2007 (8) Schuster et al., TRUST 2015 (2) U. Rührmair, et al, T-IFS, 2013 (4) U. Rührmair, et al, CHES 2014 (6) U. Rührmair, et al, CCS 2010 4 Security of Bistable Ring PUF RFIDsec 2015

  12. PUFs and Modeling Attacks 0 0 0 0 Q S 1 1 1 1 … 1 1 1 1 R 0 0 0 0 Q=1 0 1 … 1 0 ❖ Arbiter PUF susceptible to voltage S R • Challenges: C i ∈ 2 n (n= num stages) additive delay model • Responses: r i ∈ {0,1} (n=1 shown) time Q=0 R S voltage time (7) G. Becker, CHES 2015 (1) D. Lim. MSc Thesis, MIT, 2004 (3) M. Majzoobi, et al. ICCAD 2008 (5) G. Suh et al. DAC 2007 (8) Schuster et al., TRUST 2015 (2) U. Rührmair, et al, T-IFS, 2013 (4) U. Rührmair, et al, CHES 2014 (6) U. Rührmair, et al, CCS 2010 4 Security of Bistable Ring PUF RFIDsec 2015

  13. PUFs and Modeling Attacks 0 0 0 0 Q S 1 1 1 1 … 1 1 1 1 R 0 0 0 0 Q=1 0 1 … 1 0 ❖ Arbiter PUF susceptible to voltage S R • Challenges: C i ∈ 2 n (n= num stages) additive delay model • Responses: r i ∈ {0,1} (n=1 shown) time Q=0 ❖ Arms race of designs versus attacks ongoing … . (5) , Lightweight PUF (3) R S ❖ XOR PUF voltage (1) , Evolutionary Strategies (6) , Logistic Regression (6) , ANN (8) , Hybrid attacks (4) ❖ SVM time (7) G. Becker, CHES 2015 (1) D. Lim. MSc Thesis, MIT, 2004 (3) M. Majzoobi, et al. ICCAD 2008 (5) G. Suh et al. DAC 2007 (8) Schuster et al., TRUST 2015 (2) U. Rührmair, et al, T-IFS, 2013 (4) U. Rührmair, et al, CHES 2014 (6) U. Rührmair, et al, CCS 2010 4 Security of Bistable Ring PUF RFIDsec 2015

  14. Bistable Ring PUFs • BR PUF (5) is composed of n-stages, where each stage has two inverting delay elements (NOR gates as an example) • Each challenge vector configures a unique ring C i ∈ 2 n (n= num stages) • Ring has two stable states r i ∈ {0,1} (5) Q Chen, et al. HOST, 2011 5 Security of Bistable Ring PUF RFIDsec 2015

  15. FPGA implementation BR PUF implemented on Spartan VI FPGA 64-bit BR PUF implementation including peripheral logic, I/O etc # of slices 3556 # of slice flip flops 3688 # of LUTs 6318 544 gates to implement only the basic BR PUF 6 Security of Bistable Ring PUF RFIDsec 2015

  16. Outline ● Background • PUFs • Modeling attacks on PUFs • Bistable Ring PUF ● Security Evaluation of BR PUFs • Modeling the BR PUF • Results against BR PUF and variants ● Security Enhancement of BR PUFs • XORing BR PUFs to enhance the security • Impact on other PUF parameters ● Conclusion and future work 7 Security of Bistable Ring PUF RFIDsec 2015

  17. Evaluating Response of BR PUF 1. Apply reset and challenge to configure ring 2. Release reset 3. Read response after allow time for stabilization 8 Security of Bistable Ring PUF RFIDsec 2015

  18. Evaluating Response of BR PUF 1. Apply reset and challenge to configure ring 2. Release reset 3. Read response after allow time for stabilization 0 0 0 0 1 0 0 0 0 8 Security of Bistable Ring PUF RFIDsec 2015

  19. Evaluating Response of BR PUF 1. Apply reset and challenge to configure ring 2. Release reset 3. Read response after allow time for stabilization 0 8 Security of Bistable Ring PUF RFIDsec 2015

  20. Evaluating Response of BR PUF 1. Apply reset and challenge to configure ring 2. Release reset 3. Read response after allow time for stabilization 0 0 1 1 0 1 1 0 0 8 Security of Bistable Ring PUF RFIDsec 2015

  21. Evaluating Response of BR PUF 1. Apply reset and challenge to configure ring 2. Release reset 3. Read response after allow time for stabilization 1 1 0 0 0 0 0 1 1 8 Security of Bistable Ring PUF RFIDsec 2015

  22. Modeling the BR PUF • Represent each stage by two weights • Weights represent tendency to favor a stage output of 1 over stage output of 0 • t i represents weight of top gate in i th stage • b i represents weight of bottom gate in i th stage Assumption: there exist weights t i that explain the challenge response mapping of BR PUF b i 9 Security of Bistable Ring PUF RFIDsec 2015

  23. Example • Challenge bits select weights, stage index determines signs • Response tells whether sum is negative or positive • Additive delay model (like Arbiter PUF) t 0 − b 1 + t 2 − t 3 + b 4 − b 5 + t 6 − t 7 10 Security of Bistable Ring PUF RFIDsec 2015

Recommend


More recommend