search for new physics various methods high energy lhc
play

Search for New Physics: Various Methods High Energy (LHC) High - PowerPoint PPT Presentation

Sin 2 q W = 0.238 q W = 29,2 Future PVES Experiments: New, high precision measurements of the weak mixing angle sin 2 W q W Frank Maas (Helmholtz Institute Mainz, Institute for Nuclear Phyiscs, PRISMA cluster of excellence Johannes


  1. Sin 2 q W = 0.238 q W = 29,2 ° Future PVES Experiments: New, high precision measurements of the weak mixing angle sin 2 θ W q W Frank Maas (Helmholtz Institute Mainz, Institute for Nuclear Phyiscs, PRISMA cluster of excellence Johannes Gutenberg University Mainz) “The Electroweak Box Workshop”, Amherst Center for Fundamental Interactions September 428-30, 2017

  2. Search for New Physics: Various Methods High Energy (LHC) High Intensity High Precision (B-decays) ((g-2) µ , EDM, sin 2 q W , …) (at low energy)

  3. Direct observation versus precision measurements: top-quark Direct measurement Precision measurements

  4. P2

  5. The role of the weak mixing angle The relative strength between the weak and electromagnetic interaction is determined by the weak mixing angle: sin 2 (θ W ) Q W (p) = 1 – 4 sin 2 θ W Q e (p) = +e electric charge of the proton weak charge of the proton sin 2 θ W : a central parameter of the standard model

  6. P2 (Mainz/MESA)

  7. „running “ sin 2 θ eff or sin 2 θ W (µ)

  8. Precision measurements and quantum corrections: running sin 2 θ W (µ) running α Universal quantum corrections: can be absorbed into a scale dependent, „running “ sin 2 θ eff or sin 2 θ W (µ)

  9. 0.245 QW (p) NuTeV QW (e) 0.24 P2@MESA Qweak Moller SOLID 0.235 QW (APV ) LEP1 ATLAS eDIS Tevatron 0.23 SLD 3 % sin 2 θ W (Q) CMS 0.225 hs 0.0001 0.001 0.01 0.1 1 10 100 1000 10000 Q [GeV]

  10. Sensitivity to new physics beyond the Standard Model

  11. Sensitivity to new physics beyond the Standard Model Mixing with New Extra Z Dark photon or Contact interaction Fermions Dark Z

  12. Dark Photon, Z-Boson

  13. New massive force carrier of extra U(1) d gauge group; predicted in almost all string compactifications Dark photon LHC 10 -6 10 -2 10 6 10 9 10 11 10 13 Mass [eV] a ¢ = e 2 2 · a em Axion W’, Z’ Search for the O(GeV/c 2 ) mass scale in a world-wide effort Ø Could explain large number of astrophysical anomalies Arkani-Hamed et al. (2009) Andreas, Ringwald (2010); Andreas, Niebuhr, Ringwald (2012) Ø Could (have) explained presently seen deviation of >3 s between (g-2) μ Standard Model prediction and direct (g-2) μ measurement Pospelov(2008)

  14. Status 2011 10 -2 (g-2) e vs. α (g-2) µ BaBar e + e − →γ µ + µ − Coupling KLOE Mixing Parameter ε |(g-2) µ |< 2 σ 10 -3 allowed parameter range for Dark Photon explanation of (g-2) μ E774 E141 10 -4 10 100 1000 Dark Photon Mass m γ ’ (MeV/c 2 ) Mass

  15. H. Davoudiasl, W. Marciano

  16. Running sin 2 θ W and Dark Parity Violation Possible P2 Q 2 -Range Bill Marciano

  17. Running sin 2 θ W and Dark Parity Violation H. Davoudiasl, W. Marciano

  18. Weak Charge Of Proton: Qweak (Jlab), P2 (MESA) Weak Weak Charge Charge Of Of Quarks: Electron: SOLID MOELLER (PVDIS) (JLAB) (JLAB)

  19. The role of the weak mixing angle The relative strength between the weak and electromagnetic interaction is determined by the weak mixing angle: sin 2 (θ W ) Q W (p) = 1 – 4 sin 2 θ W Q e (p) = +e electric charge of the proton weak charge of the proton sin 2 θ W : a central parameter of the standard model

  20. Proton: special case 1 – 4 sin 2 θ W Proton Weak charge: Q W (p) = 4 D sin 2 θ W D Q W (p) Error: = = 4/( (1/sin 2 θ W ) – 4 ) ( D sin 2 θ W /sin 2 θ W ) D Q W (p)/Q W (p) Rel. error: D sin 2 θ W /sin 2 θ W = ( (1/sin 2 θ W ) – 4 ) /4 D Q W (p)/Q W (p) Rel. error sin 2 θ W (50 MeV) Example: = 0.238 4/( (1/sin 2 θ W ) – 4 ) ~ 20 D Q W (p)/Q W (p) = 2% from Experiment D sin 2 θ W /sin 2 θ W = 0.1 % same precision as LEP, SLAC Neutron Weak charge: = D sin 2 θ W /sin 2 θ W D Q W (p)/Q W (n)

  21. Jens Erler

  22. Experimental Method: Parity Violating Electron Scattering

  23. Parity Violating Asymmetry in elastic electron proton scattering σ ≈ (V-A) e (V-A) p A e V p +V e A p V-A coupling: parity-violating cross section asymmetry A LR longitudinally pol. electrons unpolarised protons

  24. Parity violating cross section asymmetry tracking system weak charge polarisation measurement hadron structure

  25. • Contributions to D sin² Q W for 35° central scattering angle, E=150 MeV, 10000 h of data taking

  26. P2-Precision in sin 2 θ W Δsin 2 θ W = 3.6 10 -4 (0.13 %) Beam energy and luminosity needs further optimization S. Baunack, D. Becker and P. Larin Frank Maas, Teilchenphysikkolloquium, Heidleberg, Feb. 5, 2013

  27. Conceptually very simple experiments A = (N + -N - )/(N + +N - ) D A = (N + +N - ) -1/2 = N -1/2 2% Measurement N = 6.25 x 10 18 events A = 20 x 10 -9 Highest rate, measure Q 2 : Large Solid Angle Spectrometers

  28. Apparative (false) asymmetries: Extreme good control of beam and target Flip Helicity fast Extra spin flip

  29. PVeS Experiment Summary 100% Pioneering 10% Strange Form Factor (1998-2009) -4 S.M. Study (2003-2005) 10 JLab 2010-2012 Future E122 1% -5 PVDIS-6 10 G0 Mainz-Be H-I SAMPLE SOLID -6 10 A4 G0 ) PV MIT-12C A4 H-III (A A4 H-He -7 δ 10 H-II PREX-I E158 PREX-II -8 10 Qweak MESA-12C -9 10 Moller Kent Paschke MESA-P2 -10 10 -8 -6 -5 -3 -7 -4 10 10 10 10 10 10 A PV

  30. Counting Technique

  31. Analogue Technique Measure Flux of Scattered electrons: - no pile-up (double count losses) - sensitive to small electr. fields. - no separation of phys. process

  32. Qweak (1GeV) @ Jlab P2@MESA (0.150 GeV) @ Mainz Proton weak charge (4%) Proton weak charge (1.7%) Toroid spectrometer Solenoid spectrometer SOLID (PVDIS 11GeV) @ Jlab Quark weak charge Moeller (11GeV) @ Jlab Solenoid spectrometer Electron weak charge Toroid Spectrometer

  33. P2-experimental setup Magnetic field 0.6 T P2-experiment: Magnetic solenoid spectrometer (0.6 T) with integrating detectors Superconducting magnet, 0.6 T 100 Detectors, Fused silica (“quartz”) e - beam, 150 µA PMT readout e - beam, 150 µA 3.7 m 100 Detectors, Fused silica (“quartz”) 13 t lead PMT readout 13 t lead 60 cm liquid H target collimator 3.7 m 60 cm liquid H target collimator

  34. MESA accelerator new, Mainz Energy Recovering Acc. Beam Dump Magnetic spectrometer MAGIX Parity violation experiment P2

  35. • Parity violating electron scattering: “Low energy frontier” comprises a sensitive test of the standard model complementary to LHC • Determination of sin 2 ( q W ) with high precision (same as Z-pole) • P2-Experiment (proton weak charge) in Mainz under preparation New MESA energy recovering accelerator at 155 MeV, target precision is 1.7% in Qweak i.e. 0.13% in sin 2 ( q W ), Sensitivity to new physics up to a scale of 49 TeV • Much more physics from PV electron scattering • Together with Moeller@Jlab (electron weak charge) and SOLID@Jlab (quark weak charge) very sensitive test of standard model and possibility to narrow in on Standard Model Extension

  36. Other Measurements: Carbon, Lead

  37. P2: Funding PRISMA “Forschungsbau”: Detector system (quartz-based) including electronics 2.0 M€ Solenoid magnet 1.5 M€ He-refrigerator for the hydrogen target 1.7 M€ University (through “Großgeräte”) Silicon tracker system for Q 2 -measurement development 0.5 M€ Enhanced sensitivity Double Wien filter for MESA 0.4 M€ To new physics Hydro-Moeller detector system 0.4 M€ Hydrogen target system 0.35 M€

  38. P2: Funding Measurement of neutron distribution in nuclei deceisive for Neutron star properties PRISMA “Forschungsbau”: Detector system (quartz-based) including electronics 2.0 M€ Solenoid magnet 1.5 M€ He-refrigerator for the hydrogen target 1.7 M€ University (through “Großgeräte”) Silicon tracker system for Q 2 -measurement development 0.5 M€ Double Wien filter for MESA 0.4 M€ Hydro-Moeller detector system 0.4 M€ Hydrogen target system 0.35 M€

  39. Yuxiang Zhao (SBU)

  40. MESA: Beam parameter

  41. Parity violating cross section asymmetry weak charge hadron structure Important input from other projects (S1, S3)

  42. Polarimetry (<0.5%)

  43. The double scattering Mott polarimeter: Mott Polarimeter: A. Gellrich and J. Kessler, Phys. Rev. A 43, 204 (1991) - Measuring left/right asymetry to calculate spin polarisation - Analysing power of target foils has to be extrapolated Double Scattering Polarimeter (DSP): - Analysing power of the targets can be calculated directly from measurements - Allows for higher precision measurement of spin polarisation - Invasive polarimetry at the electron source - Scattering chamber in operation, first double scattering data

Recommend


More recommend