sdss photometric calibration revisited
play

SDSS Photometric Calibration Revisited A look in the rear view - PowerPoint PPT Presentation

SDSS Photometric Calibration Revisited A look in the rear view mirror John Marriner 18 April 2012 Cosmology with SN The desire to determine SN magnitudes from measurements of different parts of the spectrum is a driver for precise


  1. SDSS Photometric Calibration Revisited A look in the rear view mirror John Marriner 18 April 2012

  2. Cosmology with SN  The desire to determine SN magnitudes from measurements of different parts of the spectrum is a driver for precise photometric calibration.  Comparison of different experiments requires an “absolute” calibration.  Photometry is typically difference photometry relative to field stars.  SN magnitudes vary by ~7%  Errors are reduced by averaging many SN.  Random calibration errors are a minor concern.  Even small systematic biases can cause problems.

  3. SDSS SN Calibration Strategy  Report “native magnitudes”  Measure filter response (relative throughput)  Calibrate absolute response with standard stars whose  Spectrum is well measured.  Photometric response of the SDSS telescope is measured.  Measurements of the standard stars are reported as an “AB offset”  Consider only stripe 82

  4. Details  The Photometric Telescope (PT)  Measures atmospheric extinction based on primary standards (the USNO standards).  Measures unknown field stars for use as secondary calibration standards.  The 2.5 m Survey Telescope is calibrated using the secondary calibration standards measured by the PT.  The 2.5 m Telescope is normally operated in drift scan mode.

  5. Filter Measurements From Doi (2010)

  6. More Filters

  7. Flat-field Stability #$#9 ? 2 3 #$#% * @ :;4/<(,--'3/*+/='3.>.*+- #$#8 #$#7 #$#6 #$#" # !" !#$% # #$% " &'()*+,-*.+/01'23''45

  8. Rms Measurement Variation

  9. PT Flat Field "#% "#% "#% 7 ! : 7 ! : 7 ! : "#$ "#$ "#$ (,;;)2)-*)1,-1<.6-,/=8) (,;;)2)-*)1,-1<.6-,/=8) (,;;)2)-*)1,-1<.6-,/=8) " " " !"#$ !"#$ !"#$ !"#% !"#% !"#% !"#$ " "#$ "#% "#& "#' !"#$ " "#$ "#% "#& "#' !"#$ " "#$ "#% "#& "#' ()*+,-./,0-12)+./,3)1/01-04,-.+150,-/,-6178)62))9: ()*+,-./,0-12)+./,3)1/01-04,-.+150,-/,-6178)62))9: ()*+,-./,0-12)+./,3)1/01-04,-.+150,-/,-6178)62))9: "#% "#% "#"9 7 ! : 7 ! : "#"$ "#$ "#$ (,;;)2)-*)1,-1<.6-,/=8) (,;;)2)-*)1,-1<.6-,/=8) :055)*/,0-12;.4-,/<3)7 "#"8 " " " !"#$ !"#$ !"#"8 !"#% !"#% !"#"$ !"#$ " "#$ "#% "#& "#' !"#$ " "#$ "#% "#& "#' !"#$ " "#$ "#% "#& "#' ()*+,-./,0-12)+./,3)1/01-04,-.+150,-/,-6178)62))9: ()*+,-./,0-12)+./,3)1/01-04,-.+150,-/,-6178)62))9: ()*+,-./,0-123)45))67

  10. What is the Ideal Star Flat Dither Pattern?  Rely on dome flats for high spatial scales.  Dither by 1/2, 1/4, 1/8, …? ∑ a n e inkx ( ) = f x n ∑ ( ) e inkx a n 1 − e inkh ( ) − f ( x ) = f x + h n 1 e − inkx f x + h ∫ [ ] ( ) − f ( x ) ⇒ a n = dx 1 − e inkh

  11. PT Response Map

  12. A Tale of 2 Catalogs  Stripe 82 Coadd (Ivezic)  Uses PT response for magnitude (r-band)  Uses stellar locus for colors  Multiple measurements, outliers & variables rejected  DR8 (Ubercal)  “Insensitive” to PT response  Color uncalibrated  Single epoch catalog

  13. Coadd/DR8 Comparison

  14. PT Observation Times 7$ 7% 7# 8'9/+2:8+)1;4-5 6 " $ % # !"# !$# !%# # %# $# "# &'()*+,-./0-'10+23/(4//-5

  15. Comparison Coadd/DR8 fits as a function of declination

  16. Variability of the Calibration #$#6 !%%><?>!@# 035 !7%><?># %><?>@# 8,2+*-91'/1*::'3'+('/0;.,11!&<=5 @%><?>A# #$#7 !A#><?>A# # !#$#7 !#$#6 !" !#$% # #$% " &'()*+,-*.+/01'23''45

  17. All 5 Bands #$" #$#6 #$#6 !%%<:=<!># !%%?=<?!@# !%%><?>!@# !?%<:=<# 075 025 035 !7%?=<?# !7%><?># %<:=<># 6,2+*-71'/1*88'3'+('/09.,11!&:;5 8,2+*-91'/1*::'3'+('/0;.<11!&=>5 %?=<?@# 8,2+*-91'/1*::'3'+('/0;.,11!&<=5 %><?>@# >%<:=<@# @%?=<?A# @%><?>A# !@#<:=<@# #$#% #$#7 #$#7 !A#?=<?A# !A#><?>A# # # # !#$#% !#$#7 !#$#7 !#$" !#$#6 !#$#6 !" !#$% # #$% " !" !#$% # #$% " !" !#$% # #$% " &'()*+,-*.+/01'23''45 &'()*+,-*.+/01'23''45 &'()*+,-*.+/01'23''45 #$#6 #$#6 !%%><?>!@# !%%><?>!@# 0*5 0B5 !7%><?># !7%><?># %><?>@# %><?>@# 8,2+*-91'/1*::'3'+('/0;.,11!&<=5 8,2+*-91'/1*::'3'+('/0;.,11!&<=5 @%><?>A# @%>3,>A# #$#7 #$#7 !A#><?>A# !A#><?>A# # # !#$#7 !#$#7 !#$#6 !#$#6 !" !#$% # #$% " !" !#$% # #$% " &'()*+,-*.+/01'23''45 &'()*+,-*.+/01'23''45

  18. AB Offsets Standard u g r i z Solar -0.0660 0.0202 0.0052 0.0207 0.0125 Solar Error 0.0068 0.0035 0.0027 0.0057 0.0070 BD+17°4708 -0.0541 0.0158 -0.0021 0.0099 -0.0054 WD Average -0.0455 0.0173 0.0037 0.0168 0.0059 WD Error 0.0149 0.0014 0.0030 0.0035 0.0057 Error u g r i z PT Measurement 0.0026 0.0015 0.0013 0.0025 0.0018 Color Transform 0.0029 0.0009 0.0008 0.0009 0.0017 HST Measurement 0.0056 0.0031 0.0022 0.0050 0.0066 SDSS Filters ? ? ? ? ? HST Calibration ? ? ? ? ?

  19. Conclusions  Calibration is only as good as the weakest link (PT filters & flat field).  Atmospheric extinction measurements are needed more frequently than once per night.  S tar flats are critical for precise flat-fields.  “Frequent” calibrations are necessary (filters & flat field? & atmospheric extinction?)  Redundancy is a key to understanding  Many standard stars  Multiple overlapping “star flats”  Cross-calibration with other surveys  A transparent calibration technique is important.

  20. Stellar Color/Color Plots

Recommend


More recommend