schism physical formulation
play

SCHISM physical formulation Joseph Zhang Advection 2 = + - PowerPoint PPT Presentation

1 SCHISM physical formulation Joseph Zhang Advection 2 = + = 0 u : advective velocity (usually known) Diffusion 3 = k : diffusivity


  1. 1 SCHISM physical formulation Joseph Zhang

  2. Advection 2 ๐ธ๐‘‘ ๐ธ๐‘ข = ๐œ–๐‘‘ ๐œ–๐‘ข + ๐’— โˆ™ ๐›ผ๐‘‘ = 0 u : advective velocity (usually known)

  3. Diffusion 3 ๐œ–๐‘‘ ๐œ–๐‘ข = ๐œ– ๐œ–๐‘จ ๐œ† ๐œ– ๐œ–๐‘จ k : diffusivity [m 2 /s]

  4. Advection-Diffusion 4 ๐ธ๐‘‘ ๐ธ๐‘ข = ๐œ– ๐œ–๐‘จ ๐œ† ๐œ– ๐œ–๐‘จ

  5. Dispersion 5 Waves of different frequencies travel at different phase speeds โ€ข Usually related to derivatives of odd order (of either physical or โ€ข numerical origin) ๐œ’ ๐‘ข + ๐œ’ ๐‘ฆ๐‘ฆ๐‘ฆ โˆ’ 6๐œ’๐œ’ ๐‘ฆ = 0 With dispersion No dispersion

  6. Governing equations: Reynolds-averged Navier-Stokes (with vegetation) 6 ๏‚ถ w Continuity equation ๏ƒ‘ ๏ƒ— ๏€ซ ๏€ฝ ๏€ฝ ๏ฎ 0, ( ( , )) u u u v ๏‚ถ z ๏‚ถ ๏จ ๏จ ๏ƒฒ ๏€ซ ๏ƒ‘ ๏ƒ— ๏€ฝ 0 h dz u Momentum equations ๏‚ถ ๏ฎ ๏€ญ vegetation t ๏‚ถ ๏‚ถ ๏ƒฆ ๏ƒถ ๐ธ๐’— 1 ๏จ D u u g ๏ƒฒ ๏€ฝ ๏€ญ ๏ƒ‘ ๏จ ๏ฎ ๏€ฝ ๏€ญ ๏‚ด ๏€ซ ๏ก ๏ƒ‘ ๏น ๏€ญ ๏ƒ‘ ๏€ญ ๏ƒ‘ ๏ฒ ๏บ ๏€ซ ๏ƒ‘ ๏ญ ๏ƒ‘ ห† ๏ƒง ๏ƒท + ; ( ) f g f f k u g p d u ๐‘’๐‘ข = ๐  โˆ’ ๐‘•๐›ผ๐œƒ + ๐’ ๐’œ โˆ’ ๐›ฝ ๐’— ๐’—๐‘€ ๐‘ฆ, ๐‘ง, ๐‘จ ๏‚ถ ๏‚ถ ๏ฒ ๏ฒ ๏ƒจ ๏ƒธ A Dt z z z 0 0 ๐œ‰ ๐œ–๐’— ๐œ–๐‘จ = ๐Š ๐‘ฅ , ๐‘จ = ๐œƒ Vertical b.c . (3D): ๐œ‰ ๐œ–๐’— ๐œ–๐‘จ = ๐œ“๐’— ๐‘ , ๐‘จ = โˆ’โ„Ž ๐œ–๐‘จ ๐œ‰ ๐œ–๐’— ๐œ– z , 3๐ธ ๐œ–๐‘จ East ๐’ ๐‘จ = ๐Š ๐’™ โˆ’ ๐œ“๐’— MSL , 2๐ธ x ๐ผ ๐‘€ ๐‘ฆ, ๐‘ง, ๐‘จ = แ‰Šโ„‹ ๐‘จ ๐‘ค โˆ’ ๐‘จ , 3๐ธ z=z v 1, 2๐ธ (vegetation) ๐›ฝ(๐‘ฆ, ๐‘ง) = ๐ธ ๐‘ค ๐‘‚ ๐‘ค ๐ท ๐ธ๐‘ค /2

  7. Governing equations: Reynolds-averged Navier-Stokes (with SAV) 7 ๏ฒ ๏€ฝ ๏ฒ ( , , ) Equation of state p S T ๏ฎ Transport of salt and temperature ๏ฎ ๏‚ถ ๏‚ถ ๏ƒฆ ๏ƒถ Dc c ๏€ฝ k ๏€ซ ๏€ซ ๏ƒ‘ k ๏ƒ‘ ๏€ฝ ๏ƒง ๏ƒท ( ), ( , ) Q c c S T ๏‚ถ ๏‚ถ ๏ƒจ ๏ƒธ h Dt z z Turbulence closure: Umlauf and Burchard 2003 ๏ฎ shear stratification ๐ธ๐‘™ ๐ธ๐‘ข = ๐œ– ๐œ” ๐œ–๐‘™ + ๐œ‰๐‘ 2 + ๐œ†๐‘‚ 2 โˆ’ ๐œ— + ๐‘‘ ๐‘”๐‘™ ๐›ฝ ๐’— 3 โ„‹(๐‘จ ๐‘ค โˆ’ ๐‘จ) ๐œ–๐‘จ ๐œ‰ ๐‘™ ๐œ–๐‘จ vegetation ๐ธ๐œ” ๐ธ๐‘ข = ๐œ– ๐œ–๐œ” + ๐œ” ๐‘™ ๐‘‘ ๐œ”1 ๐œ‰๐‘ 2 + ๐‘‘ ๐œ”3 ๐œ†๐‘‚ 2 โˆ’ ๐‘‘ ๐œ”2 ๐œ—๐บ ๐‘ฅ๐‘๐‘š๐‘š + ๐‘‘ ๐‘”๐œ” ๐›ฝ ๐’— 3 โ„‹(๐‘จ ๐‘ค โˆ’ ๐‘จ) ๐œ–๐‘จ ๐œ‰ ๐œ” ๐œ–๐‘จ ๏€จ ๏€ฉ p k ๏น ๏€ฝ 0 m n ๏ฌ , c ๏ญ

  8. On spherical coordinates 8 z g f 0 ( y ) z l 0 ( x ) l P Avoids polar singularity easily โ€ข f Preserves all original matrix properties โ€ข O y g x g We transform the coordinates instead of eqs There are 2 frames used: 1. Global 2. Lon/lat (local @ node/element/side) Changes to the code is mainly related to re-project vectors and to calculate distances

  9. Continuity equation 9 Vertical boundary conditions: kinematic z ๏€ฝ ๏จ ( , , ) z x y t surface ๏‚ถ ๏จ ๏‚ถ ๏จ ๏‚ถ ๏จ dz dx dy ๏‚บ ๏€ฝ ๏€ซ ๏€ซ ๏€ฝ ๏จ ๏€ซ ๏จ ๏€ซ ๏จ w u v ๏‚ถ ๏‚ถ ๏‚ถ x y t dt dt x dt y t ๏€ฝ ๏€ญ ( , ) z h x y bottom dz ๏‚บ ๏€ฝ ๏€ญ ๏€ญ w uh vh x y dt ๏จ ๏จ ๏ƒฒ ๏€ญ ๏ƒ‘ ๏ƒ— ๏€ซ ๏€ฝ 0 u dz w ๏€ญ h h Integrated continuity equation ๏‚ถ ๏จ ๏จ ๏ƒฒ ๏€ซ ๏ƒ‘ ๏ƒ— ๏€ฝ 0 u dz ๏‚ถ ๏€ญ t h ๏จ ๏ƒฒ ๏ƒ‘ ๏ƒ— ๏€ซ ๏จ ๏€ซ ๏จ ๏€ซ ๏จ ๏€ซ ๏€ซ ๏€ฝ 0 u dz u v uh vh t x y x y ๏€ญ h ๏จ ๏จ ๏ƒฒ ๏ƒฒ ๏ƒ‘ ๏ƒ— ๏€ฝ ๏ƒ‘ ๏ƒ— ๏€ซ ๏ƒ—๏ƒ‘ ๏จ ๏€ซ ( ) u dz u dz u h ๏€ญ ๏€ญ h h

  10. Hydrostatic model 10 Hydrostatic assumption ๏จ ๏ฒ ๏‚ถ 1 P ๏ƒฒ ๏€ญ ๏€ญ ๏€ฝ ๏ƒž ๏€ฝ ๏บ ๏€ซ 0 g P g d P ๏ฒ ๏‚ถ A z z Separation of horizontal and vertical scales ๏จ ๏ฒ ๏บ ๏‚ถ ๏‚ถ ๏ƒฆ ๏ƒถ 1 D u u ๏ƒฒ ๏€ฝ ๏€ญ ๏ƒ‘ ๏€ซ ๏ƒ‘ ๏ƒ— ๏ญ ๏ƒ‘ ๏€ซ ๏ฎ ๏€ญ ๏‚ด ( ) + ( ) ๏ƒง ๏ƒท u k u d P f ๏ฒ ๏‚ถ ๏‚ถ A ๏ƒจ ๏ƒธ Dt z z z ๏‚ถ ๏‚ถ ๏ƒฆ ๏ƒถ 1 D u u g ๏จ ๏ƒฒ ๏€ฝ ๏€ญ ๏ƒ‘ ๏จ ๏ฎ ๏€ญ ๏‚ด ๏€ซ ๏ก ๏ƒ‘ ๏น ๏€ญ ๏ƒ‘ ๏€ญ ๏ƒ‘ ๏ฒ ๏บ ๏€ซ ๏ƒ‘ ๏ญ ๏ƒ‘ ห† + ๏ƒง ๏ƒท ( ) g f k u g p d u ๏‚ถ ๏‚ถ ๏ฒ ๏ฒ ๏ƒจ ๏ƒธ A Dt z z z 0 0 Boussinesq assumption (=>incompressibility) ๏จ ๏จ ๏ƒฒ ๏ƒฒ ๏ƒ‘ ๏ฒ ๏บ ๏€ฝ ๏ƒ‘ ๏ฒ ๏บ ๏€ซ ๏ฒ ๏ƒ‘ ๏จ d d z z

  11. Momentum equation: vertical boundary condition (b.c.) 11 ๏‚ถ ๏ฎ ๏‚ถ u u Surface Bottom ๏ฎ ๏€ฝ ๏จ ๏€ฝ ๏€ฝ ๏€ญ ฯ„ at = z | | , at C u u z h ๏‚ถ ๏‚ถ w D b b z z Logarithmic law: ๏› ๏ ๏ฎ ๏€ซ ln ( ) / z h z ๏€ฝ ๏€ญ ๏‚ฃ ๏‚ฃ ๏ค ๏€ญ 0 , ( ) u u z h z h ๏ค 0 b b ln( / ) z b 0 : bottom roughness z 0 ๏‚ถ ๏ฎ u ๏ฎ ๏€ฝ u u b ๏‚ถ ๏€ซ ๏ค b ( )ln( / ) z z h z Reynolds stress: 0 b ๏ฎ ๏ค b z = ๏€ญ h ๏ฎ ๏€ฝ 1/ 2 2 , s K l m Turbulence closure: ๏€ฝ , s g ๏ฎ m 2 1 ๏€ฝ 2 / 3 2 | | K B C u 1 D b 2 ๏€ฝ k ๏€ซ ( ) l z h 0 Reynolds stress (const.) ๏ฎ ๏‚ถ k u ๏ฎ ๏€ฝ ๏€ญ ๏‚ฃ ๏‚ฃ ๏ค ๏€ญ 1/ 2 0 | | , ( ) C u u z h z h ๏‚ถ ๏ค D b b 0 b ln( / ) z z 0 b Drag coefficient: ๏€ญ 2 ๏ฎ ๏ƒฆ ๏ƒถ ๏ค 1 ln ๏€ฝ ๏ƒง b ๏ƒท C k D ๏ƒจ ๏ƒธ z 0 0

  12. Bottom drag 12 meters โ€ข Use of z 0 seems most natural option, but tends to over-estimate C D in shallow area โ€ข C D should vary with bottom layer thickness (i.e. vertical grid) โ€ข Different from 2D, 3D results of elevation depend on vertical grid (with constant C D )

  13. Transport equation: source terms 13 Precipitation and evaporation model ๏‚ถ ๏€ญ ( ) , S S E P k ๏€ฝ ๏€ฝ ๏จ z ๏‚ถ ๏ฒ z 0 E : evaporation rate (kg/m 2 /s) (calculated from heat exchange model) P : Precipitation rate (kg/m2/s) (measured) Heat exchange model ๏‚ถ T H k ๏€ฝ ๏€ฝ ๏จ ๏€ฝ ๏‚ฏ ๏€ญ ๏‚ญ ๏€ญ ๏€ญ , z ( ) H IR IR S E ๏‚ถ ๏ฒ z C 0 p ๏‚ถ 1 SW ๏€ฝ Q ๏ฒ ๏‚ถ C z 0 p IRโ€™s are down/upwelling infrared (LW) radiation at surface S is the turbulent flux of sensible heat (upwelling) E is the turbulent flux of latent heat (upwelling) SW is net downward solar radiation The solar radiation is penetrative (body force) with attenuation (which depends upon turbidity) acts as a heat source within the water.

  14. Air-sea exchange 14 1. Momentum: near-surface winds apply wind-stress on surface (influences advection, location of density fronts) free surface height: variations in atmospheric pressure over the domain โ€ข have a direct impact upon free surface height; set up due to wind stresses 2. Heat: various components of heat fluxes (dependent upon many variables) determine surface heat budget โ€ข shortwave radiation (solar) - penetrative โ€ข longwave radiation (infrared) โ€ข sensible heat flux (direct transfer of heat) โ€ข latent heat flux (heating/cooling associated with condensation/evaporation) 3. Mass: evaporation, condensation, precipitation act as sources/sinks of fresh water 1-2 are accomplished thru the heat/salt exchange model

  15. Solar radiation 15 Downwelling SW at the surface is forecast in NWP models - a function of time of year, time of day, weather conditions, latitude, etc [sflux_rad*.nc] Upwelling SW is a simple function of downwelling SW ๏‚ญ๏€ฝ ๏ก ๏‚ฏ SW SW ๏ก is the albedo - typically depends on solar zenith angle and sea state Attenuation of SW radiation in the water column is a function of turbidity and depth D (Jerlov, 1968, 1976; Paulson and Clayson, 1977): ๏ƒฉ ๏€ญ ๏€ญ ๏ƒน ๏€ฝ ๏€ญ ๏ก ๏‚ฏ ๏€ซ ๏€ญ / / D d D d ( ) (1 ) Re (1 R)e SW z SW ๏ƒซ 1 2 ๏ƒป R , d 1 and d 2 depend on water type; D is the distance from F.S. Type R d 1 (m) d 2 (m) III Jerlov I 0.58 0.35 23 Jerlov IA 0.62 0.60 20 Depth II Jerlov IB 0.67 1.00 17 (m) Jerlov II 0.77 1.50 14 Jerlov III 0.78 1.40 7.9 I โ€˜6โ€™ Paulson and Simpson 0.62 1.50 20 โ€˜7โ€™ Estuary 0.80 0.90 2.1 SW

  16. Infrared radiation 16 โ€ข Downwelling IR at the surface is forecast in NWP models - a function of air temperature, cloud cover, humidity, etc [sflux_rad*.nc] โ€ข Upwelling IR is can be approximated as either a broadband measurement solely within the IR wavelengths (i.e., 4-50 ฮผ m), or more commonly the blackbody radiative flux ๏‚ญ๏€ฝ es 4 IR T sfc e is the emissivity, ~1 s is the Stefan-Boltzmann constant T sfc is the surface temperature

  17. Turbulent Fluxes of Sensible and Latent Heat 17 In general, turbulent fluxes are a function of: โ€ข T sfc ,, T air โ€ข near-surface wind speed โ€ข surface atmospheric pressure โ€ข near-surface humidity Scales of motion responsible for these heat fluxes are much smaller than can be resolved by any operational model - they must be parameterized (i.e., bulk aerodynamic formulation) ๏€ฝ ๏€ญ ๏ฒ ๏€ฝ ๏€ญ ๏ฒ ' ' S C w T C u T * * a pa a pa ๏€ฝ ๏€ญ ๏ฒ ๏€ฝ ๏€ญ ๏ฒ ' ' E L w q L u q * * a e a e where: u * is the friction scaling velocity T * is the temperature scaling parameter q * is the specific humidity scaling parameter ๏ฒ a is the surface air density C pa is the specific heat of air L e is the latent heat of vaporization The scaling parameters are defined using Monin-Obukhov similarity theory, and must be solved for iteratively (i.e., Zeng et al., 1998).

  18. 18 Wind Shear Stress: Turbulent Flux of Momentum Calculation of shear stress follows naturally from calculation of turbulent heat fluxes Total shear stress of atmosphere upon surface: ๏ฒ ๏ด ๏€ฝ 2 a u ๏ฒ * w 0 Alternatively, Pond and Picardโ€™s formulation can be used as a simpler option ๏ฒ ๏€ฝ ฯ„ u u a | | C ๏ฒ w ds w w 0 ๏€ซ ' 0.61 0.063 u ๏€ฝ w C ds 1000 ๏€ฝ ' max(6, min(50, )) u u w w

Recommend


More recommend