1 SCHISM physical formulation Joseph Zhang
Advection 2 ๐ธ๐ ๐ธ๐ข = ๐๐ ๐๐ข + ๐ โ ๐ผ๐ = 0 u : advective velocity (usually known)
Diffusion 3 ๐๐ ๐๐ข = ๐ ๐๐จ ๐ ๐ ๐๐จ k : diffusivity [m 2 /s]
Advection-Diffusion 4 ๐ธ๐ ๐ธ๐ข = ๐ ๐๐จ ๐ ๐ ๐๐จ
Dispersion 5 Waves of different frequencies travel at different phase speeds โข Usually related to derivatives of odd order (of either physical or โข numerical origin) ๐ ๐ข + ๐ ๐ฆ๐ฆ๐ฆ โ 6๐๐ ๐ฆ = 0 With dispersion No dispersion
Governing equations: Reynolds-averged Navier-Stokes (with vegetation) 6 ๏ถ w Continuity equation ๏ ๏ ๏ซ ๏ฝ ๏ฝ ๏ฎ 0, ( ( , )) u u u v ๏ถ z ๏ถ ๏จ ๏จ ๏ฒ ๏ซ ๏ ๏ ๏ฝ 0 h dz u Momentum equations ๏ถ ๏ฎ ๏ญ vegetation t ๏ถ ๏ถ ๏ฆ ๏ถ ๐ธ๐ 1 ๏จ D u u g ๏ฒ ๏ฝ ๏ญ ๏ ๏จ ๏ฎ ๏ฝ ๏ญ ๏ด ๏ซ ๏ก ๏ ๏น ๏ญ ๏ ๏ญ ๏ ๏ฒ ๏บ ๏ซ ๏ ๏ญ ๏ ห ๏ง ๏ท + ; ( ) f g f f k u g p d u ๐๐ข = ๐ โ ๐๐ผ๐ + ๐ ๐ โ ๐ฝ ๐ ๐๐ ๐ฆ, ๐ง, ๐จ ๏ถ ๏ถ ๏ฒ ๏ฒ ๏จ ๏ธ A Dt z z z 0 0 ๐ ๐๐ ๐๐จ = ๐ ๐ฅ , ๐จ = ๐ Vertical b.c . (3D): ๐ ๐๐ ๐๐จ = ๐๐ ๐ , ๐จ = โโ ๐๐จ ๐ ๐๐ ๐ z , 3๐ธ ๐๐จ East ๐ ๐จ = ๐ ๐ โ ๐๐ MSL , 2๐ธ x ๐ผ ๐ ๐ฆ, ๐ง, ๐จ = แโ ๐จ ๐ค โ ๐จ , 3๐ธ z=z v 1, 2๐ธ (vegetation) ๐ฝ(๐ฆ, ๐ง) = ๐ธ ๐ค ๐ ๐ค ๐ท ๐ธ๐ค /2
Governing equations: Reynolds-averged Navier-Stokes (with SAV) 7 ๏ฒ ๏ฝ ๏ฒ ( , , ) Equation of state p S T ๏ฎ Transport of salt and temperature ๏ฎ ๏ถ ๏ถ ๏ฆ ๏ถ Dc c ๏ฝ k ๏ซ ๏ซ ๏ k ๏ ๏ฝ ๏ง ๏ท ( ), ( , ) Q c c S T ๏ถ ๏ถ ๏จ ๏ธ h Dt z z Turbulence closure: Umlauf and Burchard 2003 ๏ฎ shear stratification ๐ธ๐ ๐ธ๐ข = ๐ ๐ ๐๐ + ๐๐ 2 + ๐๐ 2 โ ๐ + ๐ ๐๐ ๐ฝ ๐ 3 โ(๐จ ๐ค โ ๐จ) ๐๐จ ๐ ๐ ๐๐จ vegetation ๐ธ๐ ๐ธ๐ข = ๐ ๐๐ + ๐ ๐ ๐ ๐1 ๐๐ 2 + ๐ ๐3 ๐๐ 2 โ ๐ ๐2 ๐๐บ ๐ฅ๐๐๐ + ๐ ๐๐ ๐ฝ ๐ 3 โ(๐จ ๐ค โ ๐จ) ๐๐จ ๐ ๐ ๐๐จ ๏จ ๏ฉ p k ๏น ๏ฝ 0 m n ๏ฌ , c ๏ญ
On spherical coordinates 8 z g f 0 ( y ) z l 0 ( x ) l P Avoids polar singularity easily โข f Preserves all original matrix properties โข O y g x g We transform the coordinates instead of eqs There are 2 frames used: 1. Global 2. Lon/lat (local @ node/element/side) Changes to the code is mainly related to re-project vectors and to calculate distances
Continuity equation 9 Vertical boundary conditions: kinematic z ๏ฝ ๏จ ( , , ) z x y t surface ๏ถ ๏จ ๏ถ ๏จ ๏ถ ๏จ dz dx dy ๏บ ๏ฝ ๏ซ ๏ซ ๏ฝ ๏จ ๏ซ ๏จ ๏ซ ๏จ w u v ๏ถ ๏ถ ๏ถ x y t dt dt x dt y t ๏ฝ ๏ญ ( , ) z h x y bottom dz ๏บ ๏ฝ ๏ญ ๏ญ w uh vh x y dt ๏จ ๏จ ๏ฒ ๏ญ ๏ ๏ ๏ซ ๏ฝ 0 u dz w ๏ญ h h Integrated continuity equation ๏ถ ๏จ ๏จ ๏ฒ ๏ซ ๏ ๏ ๏ฝ 0 u dz ๏ถ ๏ญ t h ๏จ ๏ฒ ๏ ๏ ๏ซ ๏จ ๏ซ ๏จ ๏ซ ๏จ ๏ซ ๏ซ ๏ฝ 0 u dz u v uh vh t x y x y ๏ญ h ๏จ ๏จ ๏ฒ ๏ฒ ๏ ๏ ๏ฝ ๏ ๏ ๏ซ ๏๏ ๏จ ๏ซ ( ) u dz u dz u h ๏ญ ๏ญ h h
Hydrostatic model 10 Hydrostatic assumption ๏จ ๏ฒ ๏ถ 1 P ๏ฒ ๏ญ ๏ญ ๏ฝ ๏ ๏ฝ ๏บ ๏ซ 0 g P g d P ๏ฒ ๏ถ A z z Separation of horizontal and vertical scales ๏จ ๏ฒ ๏บ ๏ถ ๏ถ ๏ฆ ๏ถ 1 D u u ๏ฒ ๏ฝ ๏ญ ๏ ๏ซ ๏ ๏ ๏ญ ๏ ๏ซ ๏ฎ ๏ญ ๏ด ( ) + ( ) ๏ง ๏ท u k u d P f ๏ฒ ๏ถ ๏ถ A ๏จ ๏ธ Dt z z z ๏ถ ๏ถ ๏ฆ ๏ถ 1 D u u g ๏จ ๏ฒ ๏ฝ ๏ญ ๏ ๏จ ๏ฎ ๏ญ ๏ด ๏ซ ๏ก ๏ ๏น ๏ญ ๏ ๏ญ ๏ ๏ฒ ๏บ ๏ซ ๏ ๏ญ ๏ ห + ๏ง ๏ท ( ) g f k u g p d u ๏ถ ๏ถ ๏ฒ ๏ฒ ๏จ ๏ธ A Dt z z z 0 0 Boussinesq assumption (=>incompressibility) ๏จ ๏จ ๏ฒ ๏ฒ ๏ ๏ฒ ๏บ ๏ฝ ๏ ๏ฒ ๏บ ๏ซ ๏ฒ ๏ ๏จ d d z z
Momentum equation: vertical boundary condition (b.c.) 11 ๏ถ ๏ฎ ๏ถ u u Surface Bottom ๏ฎ ๏ฝ ๏จ ๏ฝ ๏ฝ ๏ญ ฯ at = z | | , at C u u z h ๏ถ ๏ถ w D b b z z Logarithmic law: ๏ ๏ ๏ฎ ๏ซ ln ( ) / z h z ๏ฝ ๏ญ ๏ฃ ๏ฃ ๏ค ๏ญ 0 , ( ) u u z h z h ๏ค 0 b b ln( / ) z b 0 : bottom roughness z 0 ๏ถ ๏ฎ u ๏ฎ ๏ฝ u u b ๏ถ ๏ซ ๏ค b ( )ln( / ) z z h z Reynolds stress: 0 b ๏ฎ ๏ค b z = ๏ญ h ๏ฎ ๏ฝ 1/ 2 2 , s K l m Turbulence closure: ๏ฝ , s g ๏ฎ m 2 1 ๏ฝ 2 / 3 2 | | K B C u 1 D b 2 ๏ฝ k ๏ซ ( ) l z h 0 Reynolds stress (const.) ๏ฎ ๏ถ k u ๏ฎ ๏ฝ ๏ญ ๏ฃ ๏ฃ ๏ค ๏ญ 1/ 2 0 | | , ( ) C u u z h z h ๏ถ ๏ค D b b 0 b ln( / ) z z 0 b Drag coefficient: ๏ญ 2 ๏ฎ ๏ฆ ๏ถ ๏ค 1 ln ๏ฝ ๏ง b ๏ท C k D ๏จ ๏ธ z 0 0
Bottom drag 12 meters โข Use of z 0 seems most natural option, but tends to over-estimate C D in shallow area โข C D should vary with bottom layer thickness (i.e. vertical grid) โข Different from 2D, 3D results of elevation depend on vertical grid (with constant C D )
Transport equation: source terms 13 Precipitation and evaporation model ๏ถ ๏ญ ( ) , S S E P k ๏ฝ ๏ฝ ๏จ z ๏ถ ๏ฒ z 0 E : evaporation rate (kg/m 2 /s) (calculated from heat exchange model) P : Precipitation rate (kg/m2/s) (measured) Heat exchange model ๏ถ T H k ๏ฝ ๏ฝ ๏จ ๏ฝ ๏ฏ ๏ญ ๏ญ ๏ญ ๏ญ , z ( ) H IR IR S E ๏ถ ๏ฒ z C 0 p ๏ถ 1 SW ๏ฝ Q ๏ฒ ๏ถ C z 0 p IRโs are down/upwelling infrared (LW) radiation at surface S is the turbulent flux of sensible heat (upwelling) E is the turbulent flux of latent heat (upwelling) SW is net downward solar radiation The solar radiation is penetrative (body force) with attenuation (which depends upon turbidity) acts as a heat source within the water.
Air-sea exchange 14 1. Momentum: near-surface winds apply wind-stress on surface (influences advection, location of density fronts) free surface height: variations in atmospheric pressure over the domain โข have a direct impact upon free surface height; set up due to wind stresses 2. Heat: various components of heat fluxes (dependent upon many variables) determine surface heat budget โข shortwave radiation (solar) - penetrative โข longwave radiation (infrared) โข sensible heat flux (direct transfer of heat) โข latent heat flux (heating/cooling associated with condensation/evaporation) 3. Mass: evaporation, condensation, precipitation act as sources/sinks of fresh water 1-2 are accomplished thru the heat/salt exchange model
Solar radiation 15 Downwelling SW at the surface is forecast in NWP models - a function of time of year, time of day, weather conditions, latitude, etc [sflux_rad*.nc] Upwelling SW is a simple function of downwelling SW ๏ญ๏ฝ ๏ก ๏ฏ SW SW ๏ก is the albedo - typically depends on solar zenith angle and sea state Attenuation of SW radiation in the water column is a function of turbidity and depth D (Jerlov, 1968, 1976; Paulson and Clayson, 1977): ๏ฉ ๏ญ ๏ญ ๏น ๏ฝ ๏ญ ๏ก ๏ฏ ๏ซ ๏ญ / / D d D d ( ) (1 ) Re (1 R)e SW z SW ๏ซ 1 2 ๏ป R , d 1 and d 2 depend on water type; D is the distance from F.S. Type R d 1 (m) d 2 (m) III Jerlov I 0.58 0.35 23 Jerlov IA 0.62 0.60 20 Depth II Jerlov IB 0.67 1.00 17 (m) Jerlov II 0.77 1.50 14 Jerlov III 0.78 1.40 7.9 I โ6โ Paulson and Simpson 0.62 1.50 20 โ7โ Estuary 0.80 0.90 2.1 SW
Infrared radiation 16 โข Downwelling IR at the surface is forecast in NWP models - a function of air temperature, cloud cover, humidity, etc [sflux_rad*.nc] โข Upwelling IR is can be approximated as either a broadband measurement solely within the IR wavelengths (i.e., 4-50 ฮผ m), or more commonly the blackbody radiative flux ๏ญ๏ฝ es 4 IR T sfc e is the emissivity, ~1 s is the Stefan-Boltzmann constant T sfc is the surface temperature
Turbulent Fluxes of Sensible and Latent Heat 17 In general, turbulent fluxes are a function of: โข T sfc ,, T air โข near-surface wind speed โข surface atmospheric pressure โข near-surface humidity Scales of motion responsible for these heat fluxes are much smaller than can be resolved by any operational model - they must be parameterized (i.e., bulk aerodynamic formulation) ๏ฝ ๏ญ ๏ฒ ๏ฝ ๏ญ ๏ฒ ' ' S C w T C u T * * a pa a pa ๏ฝ ๏ญ ๏ฒ ๏ฝ ๏ญ ๏ฒ ' ' E L w q L u q * * a e a e where: u * is the friction scaling velocity T * is the temperature scaling parameter q * is the specific humidity scaling parameter ๏ฒ a is the surface air density C pa is the specific heat of air L e is the latent heat of vaporization The scaling parameters are defined using Monin-Obukhov similarity theory, and must be solved for iteratively (i.e., Zeng et al., 1998).
18 Wind Shear Stress: Turbulent Flux of Momentum Calculation of shear stress follows naturally from calculation of turbulent heat fluxes Total shear stress of atmosphere upon surface: ๏ฒ ๏ด ๏ฝ 2 a u ๏ฒ * w 0 Alternatively, Pond and Picardโs formulation can be used as a simpler option ๏ฒ ๏ฝ ฯ u u a | | C ๏ฒ w ds w w 0 ๏ซ ' 0.61 0.063 u ๏ฝ w C ds 1000 ๏ฝ ' max(6, min(50, )) u u w w
Recommend
More recommend