scattering equations in multi regge kinematics
play

Scattering Equations in Multi-Regge Kinematics Zhengwen Liu Center - PowerPoint PPT Presentation

Amplitudes in the LHC era Scattering Equations in Multi-Regge Kinematics Zhengwen Liu Center for Cosmology, Particle Physics and Phenomenology Institut de Recherche en Math ematique et Physique Base on 1811.xxxxx (with C. Duhr) and 1811.yyyyy


  1. Amplitudes in the LHC era Scattering Equations in Multi-Regge Kinematics Zhengwen Liu Center for Cosmology, Particle Physics and Phenomenology Institut de Recherche en Math´ ematique et Physique Base on 1811.xxxxx (with C. Duhr) and 1811.yyyyy Galileo Galilei Institute, Firenze November 15, 2018

  2. Outline Introduction to scattering equations Multi-Regge kinematics (MRK) • Scattering equations in MRK • Gauge theory amplitudes in MRK • Gravity amplitudes in MRK Quasi Multi-Regge kinematics • Scattering equations in QMRK • Generalized Impact factors and Lipatov vertices Summary & Outlook Zhengwen Liu (UCLouvain) Scattering Equations in MRK 1/25

  3. Scattering equations Let us start with a rational map from the moduli space M 0 ,n to the space of momenta for n massless particles scattering: 1 � σ 2 k µ dz ω µ ( z ) a = ω µ ( z ) 2 πi σ 4 σ 3 | z − σ a | = ǫ σ 5 n k µ P µ ( z ) � ω µ ( z ) = a = � n σ 1 z − σ a a =1 ( z − σ a ) a =1 Zhengwen Liu (UCLouvain) Scattering Equations in MRK 2/25

  4. Scattering equations Let us start with a rational map from the moduli space M 0 ,n to the space of momenta for n massless particles scattering: 1 � σ 2 k µ dz ω µ ( z ) a = ω µ ( z ) 2 πi σ 4 σ 3 | z − σ a | = ǫ σ 5 n k µ P µ ( z ) � ω µ ( z ) = a = � n σ 1 z − σ a a =1 ( z − σ a ) a =1 ω µ ( z ) ω µ ( z ) = 0 ω µ ( z ) maps the M 0 ,n to the null cone of momenta 2 k a · k b 1 � dz ω ( z ) 2 = � 0 = , a = 1 , 2 , . . . , n 2 πi σ a − σ b b � = a | z − σ a | = ǫ which are named as the scattering equations . [Cachazo, He & Yuan, 1306.2962, 1306.6575] Zhengwen Liu (UCLouvain) Scattering Equations in MRK 2/25

  5. Scattering equations The scattering equations: M 0 ,n → K n k a · k b � f a = = 0 , a = 1 , 2 , . . . , n σ a − σ b b � = a • This system has an SL (2 , C ) redundancy, only ( n − 3) out of n equations are independent • Equivalent to a system of homogeneous polynomial equations [Dolan & Goddard, 1402.7374] • The total number of independent solutions is ( n − 3)! Zhengwen Liu (UCLouvain) Scattering Equations in MRK 3/25

  6. Scattering equations The scattering equations: M 0 ,n → K n k a · k b � f a = = 0 , a = 1 , 2 , . . . , n σ a − σ b b � = a • This system has an SL (2 , C ) redundancy, only ( n − 3) out of n equations are independent • Equivalent to a system of homogeneous polynomial equations [Dolan & Goddard, 1402.7374] • The total number of independent solutions is ( n − 3)! • The scattering equations have appeared before in different contexts, e.g., ◮ D. Fairlie and D. Roberts (1972): amplitudes in dual models ◮ D. Gross and P. Mende (1988): the high energy behavior of string scattering ◮ E. Witten (2004): twistor string • Cachazo, He and Yuan rediscovered them in the context of field theory amplitudes [CHY, 1306.2962, 1306.6575, 1307.2199, 1309.0885] Zhengwen Liu (UCLouvain) Scattering Equations in MRK 3/25

  7. Scattering equations in 4d In 4 dimensions, the null map vector P µ ( z ) can be rewritten in spinor variables as follows: � n n � b ˜ λ α λ ˙ α � � = λ α ( z )˜ P α ˙ α ( z ) ≡ b λ ˙ α ( z ) ( z − σ a ) z − σ b a =1 b =1 deg λ ( z ) = d ∈ { 1 , . . . , n − 3 } , deg ˜ λ ( z ) = ˜ d , d + ˜ d = n − 2 . A simple construction is t i ˜ t I λ α λ ˙ α � � � � λ α ( z ) = I λ ˙ α ( z ) = i ( z − σ a ) , ( z − σ a ) z − σ I z − σ i a ∈ N I ∈ N a ∈ P i ∈ P We divide { 1 , . . . , n } into two subsets N and P , | N | = k = d +1 , | P | = n − k = ˜ d +1 . Zhengwen Liu (UCLouvain) Scattering Equations in MRK 4/25

  8. Scattering equations in 4d In 4 dimensions, the null map vector P µ ( z ) can be rewritten in spinor variables as follows: � n n � b ˜ λ α λ ˙ α � � = λ α ( z )˜ P α ˙ α ( z ) ≡ b λ ˙ α ( z ) ( z − σ a ) z − σ b a =1 b =1 deg λ ( z ) = d ∈ { 1 , . . . , n − 3 } , deg ˜ λ ( z ) = ˜ d , d + ˜ d = n − 2 . A simple construction is t i ˜ t I λ α λ ˙ α � � � � λ α ( z ) = I λ ˙ α ( z ) = i ( z − σ a ) , ( z − σ a ) z − σ I z − σ i a ∈ N I ∈ N a ∈ P i ∈ P We divide { 1 , . . . , n } into two subsets N and P , | N | = k = d +1 , | P | = n − k = ˜ d +1 . Then the two spinor maps leads to t I t i t i t I ¯ I = ˜ � ˜ � E ˙ α λ ˙ α λ ˙ α E α i = λ α λ α I − i = 0 , I ∈ N ; i − I = 0 , i ∈ P σ I − σ i σ i − σ I i ∈ P I ∈ N Zhengwen Liu (UCLouvain) Scattering Equations in MRK 4/25

  9. 4D scattering equations Geyer-Lipstein-Mason (GLM) scattering equations: t I t i t i t I � � E ˙ ¯ I = ˜ α λ ˙ α λ ˙ ˜ α E α i = λ α λ α I − i = 0 , I ∈ N ; i − I = 0 , i ∈ P σ I − σ i σ i − σ I i ∈ P I ∈ N • These equations are originally derived from the four-dimensional ambitwistor string model, based on them tree superamplitudes in N =4 SYM and N =8 supergravity are obtained. [Geyer, Lipstein & Mason, 1404.6219] Zhengwen Liu (UCLouvain) Scattering Equations in MRK 5/25

  10. Scattering equations in 4d Geyer-Lipstein-Mason (GLM) scattering equations: t I t i t i t I I = ˜ � ˜ � E ˙ ¯ α λ ˙ α λ ˙ α E α i = λ α λ α I − i = 0 , I ∈ N ; i − I = 0 , i ∈ P σ I − σ i σ i − σ I i ∈ P I ∈ N • These equations are originally derived from the four-dimensional ambitwistor string model, based on them tree superamplitudes in N =4 SYM and N =8 supergravity are obtained. [Geyer, Lipstein & Mason, 1404.6219] • Equivalent polynomial versions [Roiban, Spradlin & Volovich, hep-th/0403190; He, ZL & Wu, 1604.02834] n d = k − 1 � � t a σ m a ˜ λ ˙ α λ α ρ α m σ m a = 0 , m = 0 , 1 , . . . , d ; a − t a a = 0 a =1 m =0 • In 4d, the scattering eqs fall into “helicity sector” are characterized by k ∈ { 2 , . . . , n − 2 } � n − 3 � • In sector k , the number of independent solutions is k − 2 n − 2 � n − 3 � � = ( n − 3)! k − 2 k =2 Zhengwen Liu (UCLouvain) Scattering Equations in MRK 5/25

  11. Multi-Regge Kinematics (MRK) Multi-Regge kinematics is defined as a 2 → n − 2 scattering where k 2 k 3 the final state particles are strongly ordered in rapidity while having comparable transverse momenta, q 4 y 3 ≫ y 4 ≫ · · · ≫ y n and | k 3 | ≃ | k 4 | ≃ . . . ≃ | k n | k 4 q 5 • In lightcone coordinates k a = ( k + a , k − a ; k ⊥ a ) with k ± a = k 0 a ± k z a k 5 and k ⊥ a = k x a + ik y a k + 3 ≫ k + 4 ≫ · · · ≫ k + n • We work in center-of-momentum frame: k n − 1 κ ≡ √ s q n k 1 = (0 , − κ ; 0) , k 2 = ( − κ, 0; 0) , k 1 k n • In this region, tree amplitudes in gauge and gravuty factorize 1 1 1 A n ∼ s spin C 2;3 V 4 · · · V n − 1 C 1; n t 4 t n − 1 t n Zhengwen Liu (UCLouvain) Scattering Equations in MRK 6/25

  12. Multi-Regge Kinematics (MRK) Multi-Regge kinematics is defined as a 2 → n − 2 scattering where k 2 k 3 the final state particles are strongly ordered in rapidity while having comparable transverse momenta, q 4 k 4 y 3 ≫ y 4 ≫ · · · ≫ y n and | k 3 | ≃ | k 4 | ≃ . . . ≃ | k n | q 5 • In lightcone coordinates k a = ( k + a , k − a ; k ⊥ a ) with k ± a = k 0 a ± k z a k 5 and k ⊥ a = k x a + ik y a k + 3 ≫ k + 4 ≫ · · · ≫ k + n k n − 1 • We work in center-of-momentum frame: q n κ ≡ √ s k 1 = (0 , − κ ; 0) , k 2 = ( − κ, 0; 0) , k 1 k n • In this region, tree amplitudes in gauge and gravity factorize [Kuraev, Lipatov & Fadin, 1976; 1 1 1 A n ∼ s spin C 2;3 V 4 · · · V n − 1 C 1; n t 4 t n − 1 t n Del Duca, 1995; Lipatov, 1982] Zhengwen Liu (UCLouvain) Scattering Equations in MRK 6/25

  13. When scattering equations meet MRK

  14. Scattering equations in MRK • The simplest example: four points f 1 = − s 13 − s 14 σ 3 = s + t σ 1 = 0 , σ 2 → ∞ , = 0 = ⇒ σ 3 σ 4 σ 4 t In the Regge limit, s ≫ − t , we have � � σ 3 � s � � � � � ≃ � ≫ 1 ⇒ | σ 3 | ≫ | σ 4 | = � � � � σ 4 t � Zhengwen Liu (UCLouvain) Scattering Equations in MRK 7/25

  15. Scattering equations in MRK • The simplest example: four points f 1 = − s 13 − s 14 σ 3 = s + t σ 1 = 0 , σ 2 → ∞ , = 0 = ⇒ σ 3 σ 4 σ 4 t In the Regge limit, s ≫ − t , we have | σ 3 /σ 4 | ≃ | s/t | ≫ 1 ⇒ | σ 3 | ≫ | σ 4 | = • The next-to-simplest: five points = k + = k + σ (1) a σ (2) a σ 1 = 0 , σ 2 → ∞ , , a = 3 , 4 , 5 a a k ⊥ k ⊥ ∗ a a In MRK, k + 3 ≫ k + 4 ≫ k + 5 , we have again | σ 3 | ≫ | σ 4 | ≫ | σ 5 | Zhengwen Liu (UCLouvain) Scattering Equations in MRK 7/25

  16. Scattering equations in MRK • The simplest example: four points f 1 = − s 13 − s 14 σ 3 = s + t σ 2 → ∞ , ⇒ σ 1 = 0 , = 0 = σ 3 σ 4 σ 4 t In the Regge limit, s ≫ − t , we have | σ 3 /σ 4 | ≃ | s/t | ≫ 1 = ⇒ | σ 3 | ≫ | σ 4 | • The next-to-simplest: five points [Fairlie & Roberts, 1972] = k + = k + σ (1) a σ (2) a σ 1 = 0 , σ 2 → ∞ , , a = 3 , 4 , 5 a a k ⊥ k ⊥ ∗ a a In MRK, k + 3 ≫ k + 4 ≫ k + 5 , we have again | σ 3 | ≫ | σ 4 | ≫ | σ 5 | • Any n -point scattering eqs have a MHV (MHV) solution [Fairlie, 2008] = k + = k + σ (MHV) a a σ ( MHV ) σ 1 = 0 , σ 2 → ∞ , , a = 3 , . . . , n a a k ⊥ k ⊥ ∗ a a In MRK, k + 3 ≫ · · · ≫ k + n , we have | σ 3 | ≫ | · · · ≫ | σ n | Zhengwen Liu (UCLouvain) Scattering Equations in MRK 7/25

Recommend


More recommend