scaling around the criticality
play

scaling around the criticality arXiv:1709.01275 Hiroshi Ueda (RIKEN - PowerPoint PPT Presentation

2017/10/27 Novel Quantum States in Condensed Matter 2017@YITP Classical analogue of finite entanglement scaling around the criticality arXiv:1709.01275 Hiroshi Ueda (RIKEN AICS) Outline Matrix product state & Intrinsic correlation


  1. 2017/10/27 Novel Quantum States in Condensed Matter 2017@YITP Classical analogue of finite entanglement scaling around the criticality arXiv:1709.01275 Hiroshi Ueda (RIKEN AICS)

  2. Outline βœ“ Matrix product state & Intrinsic correlation length βœ“ History of Finite-entanglement( 𝑛 ) scaling at the criticality βœ“ Finite- 𝑛 scaling near the criticality βœ“ Demonstration: 2D Ising model βœ“ Discretized Heisenberg model: Icosahedron model βœ“ Summary & Future issues

  3. Matrix product state βœ“ Uniform canonical MPS with infinite boundary condition 𝜏 , Ξ“ 𝜏 ∈ β„‚ 𝑛×𝑛 : 𝝁 ∈ ℝ 𝑛 , Ξ› = diag(𝝁) : ΛΓ 𝜏 1 β‹― ΛΓ 𝜏 𝑂 Ξ› 𝛽𝛾 𝑛 𝑒 |Ξ¨ = Οƒ 𝛽,𝛾=1 Ϋ§ Οƒ 𝜏 1 ,β‹―,𝜏 𝑂 =1 Ϋ§ Ϋ§ Ϋ§ |𝛽 βŠ— |𝜏 1 β‹― 𝜏 𝑂 βŠ— |𝛾 𝜏 𝑂 𝜏 1 π›½πœ 1 β‹― 𝜏 𝑂 𝛾 Ξ¨ = … 𝛽 𝛾

  4. Matrix product state βœ“ Canonical form Tr Ξ› 2 = 1 , Οƒ 𝜏 Ξ“ β€ πœ Ξ› 2 Ξ“ 𝜏 = Οƒ 𝜏 Ξ“ 𝜏 Ξ› 2 Ξ“ β€ πœ = 𝐽  Ξ¨ Ξ¨ = 1 = 1 , = = Ξ¨ Ξ¨ =

  5. Matrix product state βœ“ Canonical form Tr Ξ› 2 = 1 , Οƒ 𝜏 Ξ“ β€ πœ Ξ› 2 Ξ“ 𝜏 = Οƒ 𝜏 Ξ“ 𝜏 Ξ› 2 Ξ“ β€ πœ = 𝐽  Ξ¨ Ξ¨ = 1 = 1 , = = Ξ¨ Ξ¨ =

  6. Matrix product state βœ“ Canonical form Tr Ξ› 2 = 1 , Οƒ 𝜏 Ξ“ β€ πœ Ξ› 2 Ξ“ 𝜏 = Οƒ 𝜏 Ξ“ 𝜏 Ξ› 2 Ξ“ β€ πœ = 𝐽  Ξ¨ Ξ¨ = 1 = 1 , = = Ξ¨ Ξ¨ =

  7. Matrix product state βœ“ Canonical form Tr Ξ› 2 = 1 , Οƒ 𝜏 Ξ“ β€ πœ Ξ› 2 Ξ“ 𝜏 = Οƒ 𝜏 Ξ“ 𝜏 Ξ› 2 Ξ“ β€ πœ = 𝐽  Ξ¨ Ξ¨ = 1 = 1 , = = Ξ¨ Ξ¨ =

  8. Matrix product state βœ“ Canonical form Tr Ξ› 2 = 1 , Οƒ 𝜏 Ξ“ β€ πœ Ξ› 2 Ξ“ 𝜏 = Οƒ 𝜏 Ξ“ 𝜏 Ξ› 2 Ξ“ β€ πœ = 𝐽  Ξ¨ Ξ¨ = 1 = 1 , = = Ξ¨ Ξ¨ =

  9. Transfer matrix βœ“ Local operator 𝑃 ∈ β„‚ 𝑒×𝑒 : βœ“ Eigenproblem = Οƒ 𝑗 πœ‚ 𝑗 𝑗 𝑗 βœ“ 𝐹 𝑃 ∈ β„‚ 𝑛 2 ×𝑛 2 : Because of the canonical form , πœ‚ 1 = 1 , = = 1 1 βœ“ 𝐹 1 = πœ‚ 𝑗>1 < 1 Assume MPS is not a cat state:

  10. Correlation length of MPS … Ξ¨ 𝑃 1 𝑃 𝑠+1 Ξ¨ = βœ“ …

  11. Correlation length of MPS π‘ βˆ’1 Ξ¨ 𝑃 1 𝑃 𝑠+1 Ξ¨ = Οƒ 𝑗 πœ‚ 𝑗 βœ“ 𝑗 𝑗 π‘ βˆ’1 𝐺 = Οƒ 𝑗 πœ‚ 𝑗 𝑗 βˆ’ 𝑠 βˆ’1 𝑓 βˆ’1 1 + Οƒ 𝑗=2 πœ‚ 𝑗 πœŠπ‘— 𝐺 = 𝐺 𝑗 where 𝜊 𝑗 = βˆ’ln πœ‚ 𝑗

  12. Correlation length of MPS For the power-law decay: 1) 𝐺 1 = 0 π‘ βˆ’1 Ξ¨ 𝑃 1 𝑃 𝑠+1 Ξ¨ = Οƒ 𝑗 πœ‚ 𝑗 βœ“ 𝑗 𝑗 βˆ’ 𝑠 2) Infinite sum of πœ‚ 𝑗 βˆ’1 𝑓 πœŠπ‘— 𝐺 𝑗 MPS with finite 𝑛 : π‘ βˆ’1 𝐺 = Οƒ 𝑗 πœ‚ 𝑗 𝑗 intrinsic correlation length 𝜊 𝑛 ≔ 𝜊 2 βˆ’ 𝑠 βˆ’1 𝑓 βˆ’1 1 + Οƒ 𝑗=2 πœ‚ 𝑗 πœŠπ‘— 𝐺 = 𝐺 𝑗 where 𝜊 𝑗 = βˆ’ln πœ‚ 𝑗

  13. Outline βœ“ Matrix product state & Intrinsic correlation length βœ“ History of Finite-entanglement( 𝑛 ) scaling at the criticality βœ“ Finite- 𝑛 scaling near the criticality βœ“ Demonstration: 2D Ising model βœ“ Discretized Heisenberg model: Icosahedron model βœ“ Summary & Future issues

  14. Optimization method of iMPS βœ“ iDMRG [1D Quantum: White (1992), McCulloch (2008), 2D Classical: Nishino (1995)] βœ“ iTEBD [Vidal (2007)] Fixed point: Equivalent each other βœ“ TDVP [Haegeman et.al.(2011)] [ Question ] The form of 𝜊 𝑛 at criticality: 𝜊 𝑛 β†’ ∞ β†’ ∞

  15. Intrinsic correlation length of MPS at criticality (Classical 2D Ising) βœ“ Nishino, Okunishi, and Kikuchi, Phys. Lett. A 213 , 69 (1996). CTMRG 𝜊 𝑛 , 𝜊 𝑛, 𝑂 = 𝜊 𝑛 β„± 𝑂 β„± 𝑦 = α‰Š 𝑦 βˆ’1 if 𝑦 ≫ 1, ( πœ‰ = 1 , 𝑒 = 2 ) if 𝑦 β‰ͺ 1 const.

  16. Intrinsic correlation length of MPS at criticality (1D free fermion) βœ“ Andersson, Boman, and Γ–stlund , Phys. Rev. B 59 , 10493 (1999). πœ‚ 2 ≃ 1 βˆ’ 𝑙𝑛 βˆ’π›Ύ iDMRG 1 1 𝑙 𝑛 𝛾 𝜊 𝑛 ≃ βˆ’ ln πœ‚ 2 ≃ πœ‡ ≔ πœ‚ 2 ( 𝛾 ≃ 1.3 , 𝑙 ∼ 0.45 )

  17. Intrinsic correlation length of MPS at criticality (Quantum 1D) βœ“ Tagliacozzo, Oliveira, Iblisdir, and Latorre, Phys. Rev. B 78 , 024410 (2008). iTEBD πœ“ ≔ 𝑛 𝜊 𝑛 ≃ 𝑛 πœ† πœ† Ising β‰ˆ 2.0 Transverse Field Ising 𝑑 = 1/2 S=1/2 Heisenberg πœ† HB β‰ˆ 1.37 𝑑 = 1

  18. Finite-entanglement scaling in quantum 1D systems at criticality βœ“ Pollmann, Mukerjee, Turner, and Moore, Phys. Rev. Lett. 102 , 255701 (2009) Asymptotic theory: 6 πœ† = 12 𝑑 𝑑 + 1 The mean # of values larger than πœ‡ : Calabrese and Lefevre, Phys. Rev. A 78 , 032329 (2008).

  19. Motivation βœ“ Finite-entanglement( 𝑛 ) scaling 6 βœ“ 𝜊 𝑛 ≃ 𝑛 πœ† , πœ† = at the critical point 12 𝑑 𝑑 +1 βœ“ Classical analogue of the finite- 𝑛 scaling near the criticality if π‘ˆ βˆ’ π‘ˆ βœ“ 𝜊 𝑛, π‘ˆ c β‰ͺ 1 βœ“ Demonstration: Ising model ( 𝑑 = 1/2 ), Icosahedron model ( 𝑑 ∼ 2 )

  20. Outline βœ“ Matrix product state & Intrinsic correlation length βœ“ History of Finite-entanglement( 𝑛 ) scaling at the criticality βœ“ Finite- 𝑛 scaling near the criticality βœ“ Demonstration: 2D Ising model βœ“ Discretized Heisenberg model: Icosahedron model βœ“ Summary & Future issues

  21. Finite- 𝑛 scaling near criticality βœ“ Finite size scaling [ Fisher and Barber, 1972, 1983 ] Nishino, Okunishi and Kikuchi, PLA, 1996 Andersson, Boman, and Γ–stlund , PRB 1999 + Finite- 𝑛 scaling at criticality Tagliacozzo, Oliveira, Iblisdir, and Latorre, PRB, 2008 Pollmann, Mukerjee, Turner, and Moore, PRL, 2009 Pirvu, Vidal, Verstraete, and Tagliacozzo, PRB, 2012 βœ“ Scaling assumption 1 𝑐 : characteristic length scale intrinsic to the system

  22. Finite- 𝑛 scaling near criticality βœ“ Effective correlation length at the fixed point of CTMRG, iDMRG, iTEBD … πœ‚ 1 and πœ‚ 2 : the largest and second-largest eigenvalues of the row-to-row transfer matrix. βœ“ Scaling assumption 2 βœ“ 𝑐 ∼ 𝜊(𝑛, 𝑒) & Scaling assumption 1

  23. Classical analogue of Entanglement Entropy β€’ Quantum 1D Hamiltonian β€’ Classical 2D Transfer matrix {𝝉} {𝝉} 𝑰 {𝝉′} {𝝉′} β€’ Eigenvector β€’ Ground state 𝑰 = 𝛀 = 𝐹 𝑕 𝛀 Corner transfer matrix : 𝑀 Γ— ∞ , 𝑀 = 4

  24. Classical analogue of Entanglement Entropy β€’ Reduced density matrix : 𝜍 A Ξ© Ξ© 𝑾 βˆ— 𝛀 βˆ— 𝑾 {𝝉 A } β€² } 𝑽 βˆ— {𝝉 A } 𝑽 {𝝉 A = 𝛀 β€² } {𝝉 A 𝑽 βˆ— 𝑽 Ξ› 𝑽 βˆ— 𝑾 = 𝑾 βˆ— 𝑾 𝑾 βˆ— 𝑽 Ξ› Ξ© Ξ© 𝑽 βˆ— 𝑽 βˆ— = Ξ› 2 = Ξ© 4 𝑽 𝑽

  25. Classical analogue of Entanglement Entropy CTM: 𝑴 Γ— ∞ β€’ Entanglement Entropy 4 Γ— 4 log Ξ© 𝑗 𝑇 E = βˆ’ Οƒ 𝑗 Ξ© 𝑗 𝑀 ≫ 𝜊(𝑛, π‘ˆ) 2 Γ— 2 log πœ‡ 𝑗 𝑇 A = βˆ’ Οƒ 𝑗 πœ‡ 𝑗 β€’ CTM of CTMRG 【 Nishino,Okunishi(1996) 】 : 𝑀 Γ— 𝑀 Same Ξ© 𝑗 𝑀 ≫ 𝜊(𝑛, π‘ˆ) 𝑛 : # of renormalized states β€» finite 𝑛 β‡’ finite 𝜊 𝑛, π‘ˆ 2 3 𝑀 4

  26. Classical analogue of Entanglement entropy βœ“ Definition: Near the criticality: Vidal, Latorre, Rico, and Kitaev, PRL, 2003 Calabrese and Cardy, J. Stat. Mech., 2004 βœ“ Finite- 𝑛 scaling 𝑏 : non-universal constant 𝑑 : central charge

  27. Outline βœ“ Matrix product state & Intrinsic correlation length βœ“ History of Finite-entanglement( 𝑛 ) scaling at the criticality βœ“ Finite- 𝑛 scaling near the criticality βœ“ Demonstration: 2D Ising model βœ“ Discretized Heisenberg model: Icosahedron model βœ“ Summary & Future issues

  28. Finite- 𝑛 scaling for 𝜊 6 2D Ising model: π‘ˆ C = 2.269 β‹― , 𝑑 = 1/2 , πœ‰ = 1 , 𝛾 = 1/8 , πœ† = 𝑑 1+ 12/𝑑

  29. Finite- 𝑛 scaling for 𝑁 6 2D Ising model: π‘ˆ C = 2.269 β‹― , 𝑑 = 1/2 , πœ‰ = 1 , 𝛾 = 1/8 , πœ† = 𝑑 1+ 12/𝑑 𝑁 ≑ 2 πœ€ 1,𝜏 βˆ’ 1

  30. Finite- 𝑛 scaling for 𝑇 E 6 2D Ising model: π‘ˆ C = 2.269 β‹― , 𝑑 = 1/2 , πœ‰ = 1 , 𝛾 = 1/8 , πœ† = 𝑑 1+ 12/𝑑

  31. Outline βœ“ Matrix product state & Intrinsic correlation length βœ“ History of Finite-entanglement( 𝑛 ) scaling at the criticality βœ“ Finite- 𝑛 scaling near the criticality βœ“ Demonstration: 2D Ising model βœ“ Discretized Heisenberg model: Icosahedron model βœ“ Summary & Future issues

  32. Discretized classical Heisenberg model Tetrahedron model : 4 states

  33. Discretized classical Heisenberg model Cube model : 8 states

  34. Discretized classical Heisenberg model Octahedron model : 6 states

  35. Discretized classical Heisenberg model Dodecahedron model : 20 states

  36. Discretized classical Heisenberg model Icosahedron model : 12 states

  37. Discretization & Universality class # of vertexes: 4 6 8 12 20 Ising Γ— 3 Universality 4-state Potts 2nd-order 2nd-order BKT? Class: [Wu,1982] οΌ» Surungan&Okabe, 2012 οΌ½ [Patrascioiu, [Patrascioiu, et al ., 2001] et al ., 1991] MC MC MC ↓ [Surungan& ↓ Weak 1st-order Okabe, 2012] MC 2nd-order [Roman, et al ., 2016] CTMRG οΌ» Surungan&Okabe, 2012 οΌ½ MC

  38. Discretization & Universality class # of vertexes: 4 6 8 12 20 Ising Γ— 3 Universality 4-state Potts 2nd-order 2nd-order BKT? Class: [Wu,1982] οΌ» Surungan&Okabe, 2012 οΌ½ [Patrascioiu, [Patrascioiu, et al ., 2001] et al ., 1991] MC MC MC ↓ [Surungan& ↓ Weak 1st-order Okabe, 2012] MC 2nd-order [Roman, et al ., 2016] CTMRG οΌ» Surungan&Okabe, 2012 οΌ½ MC

Recommend


More recommend