Scaling of Fusion Cost & Lossless Fusion Cost of a Fusion Policy ¯ E ( π n ) The fusion policy π n schedules O ( n ν/ 2 ) transmissions of sensor nodes O ( n ) O ( √ n ) The average fusion cost = 1 E ( π n ) ∆ � ¯ E i ( π n ) n V i ∈ V n O (1) How does ¯ E ( π n ) behave? n Constraint: No Loss in Inference Performance A fusion policy is lossless if it results in no loss of inference performance at fusion center- as if all raw data available at fusion center A. Anandkumar, J.E. Yukich, L. Tong, A. Swami, “Energy scaling laws for distributed inference in random networks,” accepted to IEEE JSAC: Special Issues on Stochastic Geometry and Random Graphs for Wireless Networks , Dec. 2008 (on ArXiv) Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 6 / 59
Problem Statement-I : Energy Scaling Laws Fusion policy graph Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 7 / 59
Problem Statement-I : Energy Scaling Laws Network graph Fusion policy graph Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 7 / 59
Problem Statement-I : Energy Scaling Laws Network graph Dependency graph Fusion policy graph Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 7 / 59
Problem Statement-I : Energy Scaling Laws Network graph Dependency graph Fusion policy graph Scalable Lossless Fusion Policy Find a sequence of scalable policies { π n } , i.e., 1 � E i ( π n ) L 2 = ¯ E π lim sup ∞ < ∞ , n n →∞ V i ∈ V n with small scaling constant ¯ E π ∞ such that optimal inference is achieved at fusion center (lossless) for a class of node configurations. Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 7 / 59
Problem II: Optimal Node Placement Distribution Spread-out Clustered Uniform 0.5 1 0.5 0.4 0.9 0.4 0.3 0.8 0.3 0.2 0.7 0.2 0.1 0.6 0.1 0 0.5 0 −0.1 0.4 −0.1 −0.2 0.3 −0.2 −0.3 0.2 −0.3 −0.4 0.1 −0.4 −0.5 0 −0.5 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 Goal: what placement strategy has best asymptotic average energy ¯ E π ∞ ? Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 8 / 59
Problem II: Optimal Node Placement Distribution Spread-out Clustered Uniform 0.5 1 0.5 0.4 0.9 0.4 0.3 0.8 0.3 0.2 0.7 0.2 0.1 0.6 0.1 0 0.5 0 −0.1 0.4 −0.1 −0.2 0.3 −0.2 −0.3 0.2 −0.3 −0.4 0.1 −0.4 −0.5 0 −0.5 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 ¯ E n O ( n ) e l b a l a O ( √ n ) c s t o N O (1) Scalable n Goal: what placement strategy has best asymptotic average energy ¯ E π ∞ ? Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 8 / 59
Problem II: Optimal Node Placement Distribution Spread-out Clustered Uniform 0.5 1 0.5 0.4 0.9 0.4 0.3 0.8 0.3 0.2 0.7 0.2 0.1 0.6 0.1 0 0.5 0 −0.1 0.4 −0.1 −0.2 0.3 −0.2 −0.3 0.2 −0.3 −0.4 0.1 −0.4 −0.5 0 −0.5 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 ¯ E n ¯ E π ∞ Scalable n Goal: what placement strategy has best asymptotic average energy ¯ E π ∞ ? Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 8 / 59
Problem II: Optimal Node Placement Distribution Spread-out Clustered Uniform 0.5 1 0.5 0.4 0.9 0.4 0.3 0.8 0.3 0.2 0.7 0.2 0.1 0.6 0.1 0 0.5 0 −0.1 0.4 −0.1 −0.2 0.3 −0.2 −0.3 0.2 −0.3 −0.4 0.1 −0.4 −0.5 0 −0.5 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 ¯ E n ? ¯ E π ∞ Scalable n Goal: what placement strategy has best asymptotic average energy ¯ E π ∞ ? Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 8 / 59
Problem II: Optimal Node Placement Distribution Spread-out Clustered Uniform 0.5 1 0.5 0.4 0.9 0.4 0.3 0.8 0.3 0.2 0.7 0.2 0.1 0.6 0.1 0 0.5 0 −0.1 0.4 −0.1 −0.2 0.3 −0.2 −0.3 0.2 −0.3 −0.4 0.1 −0.4 −0.5 0 −0.5 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 ¯ E n ? ¯ E π ∞ Scalable n Goal: what placement strategy has best asymptotic average energy ¯ E π ∞ ? Challenge: Network & dependency graphs influenced by node locations Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 8 / 59
Related Work: Scaling Laws in Networks Capacity Scaling in Wireless Networks (Gupta & Kumar, IT ‘00) 1 Information flow between nodes, O ( √ n log n ) scaling Routing Correlated Data Algorithms for gathering correlated data (Cristescu, B. Beferull-Lozano & Vetterli, TON ‘06) Function Computation Rate scaling for Computation of separable functions at a sink (Giridhar & Kumar, JSAC ‘05) Bounds on time required to achieve a distortion level for distributed computation (Ayaso, Dahleh & Shah, ISIT ‘08) Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 9 / 59
Outline Models, assumptions, and problem formulations ◮ Propagation, network, and inference models Insights from special cases Markov random fields Scalable data fusion for Markov random field Some related problems Conclusion and future work Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 10 / 59
Propagation Model and Assumptions P r P t ( dB ) Transmitter Receiver Cost for perfect reception: E T = O ( d ν ) . d ν : path-loss exponent. Scheduling to avoid interference. Quantization effects log d ignored. Characteristics Berkeley Mote � Transmission range: 500-1000 ft. � Current draw: 25mA (tx), 8mA (rx) � Rate: 38.4 Kbaud. A. Ephremides, “Energy concerns in wireless networks,” IEEE Wireless Comm. , no. 4, Aug. 2002 Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 11 / 59
Network Graph Model For Communication Random Node Placement κ ( x ) R = � n i.i.d. . . Points X i ∼ κ ( x ) on unit ball Q 1 .... ... . . . . πλ κ ( x ) bounded away from 0 and ∞ Network scaled to a fixed density λ : V i V i = � n λ X i Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 12 / 59
Network Graph Model For Communication Random Node Placement κ ( x ) R = � n i.i.d. . . Points X i ∼ κ ( x ) on unit ball Q 1 .... ... . . . . πλ κ ( x ) bounded away from 0 and ∞ Network scaled to a fixed density λ : V i V i = � n λ X i Network Graph for Communication R = � n πλ Connected set of comm. links Energy & interference constraints V i ◮ Disc graph above critical radius Adjustable transmission power Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 12 / 59
Routing Strategies With No Fusion Are Not Scalable ¯ E ( π n ) O ( n ν/ 2 ) O ( n ) O ( √ n ) O (1) n Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 13 / 59
Routing Strategies With No Fusion Are Not Scalable Single Hop ¯ E ( π n ) O ( n ν/ 2 ) O ( n ) O ( √ n ) O (1) n Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 13 / 59
Routing Strategies With No Fusion Are Not Scalable Single Hop ¯ E ( π n ) O ( n ν/ 2 ) O ( n ) O ( √ n ) O (1) n Shortest path Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 13 / 59
Routing Strategies With No Fusion Are Not Scalable Single Hop ¯ E ( π n ) O ( n ν/ 2 ) O ( n ) O ( √ n ) ? O (1) n Shortest path Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 13 / 59
Routing Strategies With No Fusion Are Not Scalable Single Hop ¯ E ( π n ) O ( n ν/ 2 ) O ( n ) O ( √ n ) ? O (1) n Shortest path Incorporate inference model (dependency graph) for scalable fusion policy Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 13 / 59
Distributed Computation of Sufficient Statistic i.i.d. ∼ N ( θ, 1) Example: Sufficient Statistic for Mean Estimation Y 1 , . . . , Y n � i Y i sufficient to estimate θ : no performance loss E. Dynkin, “Necessary and sufficient statistics for a family of probability distributions,” Tran. Math, Stat. and Prob. , vol. 1, pp. 23-41, 1961 Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 14 / 59
Distributed Computation of Sufficient Statistic i.i.d. ∼ N ( θ, 1) Example: Sufficient Statistic for Mean Estimation Y 1 , . . . , Y n � i Y i sufficient to estimate θ : no performance loss Sufficient Statistic For Inference: No Performance Loss Dimensionality reduction: lower communication costs Minimal Sufficiency: Maximum dimensionality reduction E. Dynkin, “Necessary and sufficient statistics for a family of probability distributions,” Tran. Math, Stat. and Prob. , vol. 1, pp. 23-41, 1961 Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 14 / 59
Distributed Computation of Sufficient Statistic i.i.d. ∼ N ( θ, 1) Example: Sufficient Statistic for Mean Estimation Y 1 , . . . , Y n � i Y i sufficient to estimate θ : no performance loss Sufficient Statistic For Inference: No Performance Loss Dimensionality reduction: lower communication costs Minimal Sufficiency: Maximum dimensionality reduction Decide Y 1 , . . . , Y n ∼ f 0 ( Y n ) or f 1 ( Y n ) Binary Hypothesis Testing: E. Dynkin, “Necessary and sufficient statistics for a family of probability distributions,” Tran. Math, Stat. and Prob. , vol. 1, pp. 23-41, 1961 Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 14 / 59
Distributed Computation of Sufficient Statistic i.i.d. ∼ N ( θ, 1) Example: Sufficient Statistic for Mean Estimation Y 1 , . . . , Y n � i Y i sufficient to estimate θ : no performance loss Sufficient Statistic For Inference: No Performance Loss Dimensionality reduction: lower communication costs Minimal Sufficiency: Maximum dimensionality reduction Decide Y 1 , . . . , Y n ∼ f 0 ( Y n ) or f 1 ( Y n ) Binary Hypothesis Testing: Minimal Sufficient Statistic for Binary Hypothesis Testing (Dynkin 61) Log Likelihood Ratio: L G ( Y n ) = log f 0 ( Y n ) f 1 ( Y n ) E. Dynkin, “Necessary and sufficient statistics for a family of probability distributions,” Tran. Math, Stat. and Prob. , vol. 1, pp. 23-41, 1961 Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 14 / 59
Distributed Computation of Sufficient Statistic i.i.d. ∼ N ( θ, 1) Example: Sufficient Statistic for Mean Estimation Y 1 , . . . , Y n � i Y i sufficient to estimate θ : no performance loss Sufficient Statistic For Inference: No Performance Loss Dimensionality reduction: lower communication costs Minimal Sufficiency: Maximum dimensionality reduction Decide Y 1 , . . . , Y n ∼ f 0 ( Y n ) or f 1 ( Y n ) Binary Hypothesis Testing: Minimal Sufficient Statistic for Binary Hypothesis Testing (Dynkin 61) Log Likelihood Ratio: L G ( Y n ) = log f 0 ( Y n ) f 1 ( Y n ) Is there a scalable fusion policy for computing likelihood ratio? E. Dynkin, “Necessary and sufficient statistics for a family of probability distributions,” Tran. Math, Stat. and Prob. , vol. 1, pp. 23-41, 1961 Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 14 / 59
Inference Model and Assumptions ∆ =( V 1 , · · · , V n ) and sensor data Y V n . Random location V n Binary hypothesis: H 0 vs. H 1 : H k : Y V n ∼ f ( y v n | V n = v n ; H k ) Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 15 / 59
Inference Model and Assumptions ∆ =( V 1 , · · · , V n ) and sensor data Y V n . Random location V n Binary hypothesis: H 0 vs. H 1 : H k : Y V n ∼ f ( y v n | V n = v n ; H k ) Y V n : Markov random field with dependency graph G k ( V n ) Y j Y i Fusion center Dependency neighbor condition: No direct “interaction” between two nodes unless they are neighbors in dependency graph Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 15 / 59
Outline Models, assumptions, and problem formulations ◮ Propagation, network, and inference models Insights from special cases Markov random fields Scalable data fusion for Markov random field Some related problems Conclusion and future work Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 16 / 59
Optimal Fusion: the IID Case Consider i.i.d. observations � H k : Y V ∼ f k ( Y i ) i ∈ V Sufficient statistic L ( Y V ) = log f 0 ( Y V ) � f 1 ( Y V ) = L ( Y i ) i ∈ V Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 17 / 59
Optimal Fusion: the IID Case Consider i.i.d. observations � H k : Y V ∼ f k ( Y i ) i ∈ V Sufficient statistic L ( Y V ) = log f 0 ( Y V ) � f 1 ( Y V ) = L ( Y i ) i ∈ V The optimal data fusion is the LLR aggregation over the MST (why?) Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 17 / 59
Optimal Fusion: the IID Case Consider i.i.d. observations � H k : Y V ∼ f k ( Y i ) i ∈ V Sufficient statistic L ( Y V ) = log f 0 ( Y V ) � f 1 ( Y V ) = L ( Y i ) i ∈ V The optimal data fusion is the LLR aggregation over the MST (why?) each node must transmit at least once MST minimizes power-weighted edge sum: min � i | e i | ν Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 17 / 59
Optimal Fusion: the IID Case Consider i.i.d. observations � H k : Y V ∼ f k ( Y i ) i ∈ V Sufficient statistic L ( Y V ) = log f 0 ( Y V ) � f 1 ( Y V ) = L ( Y i ) i ∈ V The optimal data fusion is the LLR aggregation over the MST (why?) each node must transmit at least once MST minimizes power-weighted edge sum: min � i | e i | ν Assume network graph contains MST Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 17 / 59
Optimal Fusion: Energy Analysis Energy per node is ) = 1 � ¯ | e | ν E ( π MST n n e ∈ MST n Steele’88, Yukich’00 1 � | e | ν L 2 → ¯ E MST < ∞ ∞ n e ∈ MST n Scalable fusion along MST for independent data J. E. Yukich,“Asymptotics for weighted minimal spanning trees on random points,” Stochastic Processes and their Applications , vol. 85, No. 1, pp. 123-138, Jan. 2000. Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 18 / 59
Role of Sensor Location Distribution � κ ( x ) 1 − ν Better scaling constant ¯ 2 dx ? E MST = ζ ( ν ; MST ) ∞ Q 1 Clustered Uniform Spread-out 0.5 1 0.5 0.4 0.9 0.4 0.3 0.8 0.3 0.2 0.7 0.2 0.1 0.6 0.1 0 0.5 0 −0.1 0.4 −0.1 −0.2 0.3 −0.2 −0.3 0.2 −0.3 −0.4 0.1 −0.4 −0.5 0 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 −0.5 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 19 / 59
Role of Sensor Location Distribution � κ ( x ) 1 − ν Better scaling constant ¯ 2 dx ? E MST = ζ ( ν ; MST ) ∞ Q 1 Clustered Uniform Spread-out 0.5 1 0.5 0.4 0.9 0.4 0.3 0.8 0.3 0.2 0.7 0.2 0.1 0.6 0.1 0 0.5 0 −0.1 0.4 −0.1 −0.2 0.3 −0.2 −0.3 0.2 −0.3 −0.4 0.1 −0.4 −0.5 0 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 −0.5 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 19 / 59
Role of Sensor Location Distribution � κ ( x ) 1 − ν Better scaling constant ¯ 2 dx ? E MST = ζ ( ν ; MST ) ∞ Q 1 Clustered Uniform Spread-out 0.5 1 0.5 0.4 0.9 0.4 0.3 0.8 0.3 0.2 0.7 0.2 0.1 0.6 0.1 0 0.5 0 −0.1 0.4 −0.1 −0.2 0.3 −0.2 −0.3 0.2 −0.3 −0.4 0.1 −0.4 −0.5 0 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 −0.5 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 Ratio of ¯ E MST of clustered and spread-out placements with respect to uniform ∞ 2.5 Uniform is Worst−Case Uniform is Optimal 2 1.5 1 0.5 0 0 1 2 3 4 5 Path-loss Exponent ν Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 19 / 59
Outline Models, assumptions, and problem formulations ◮ Propagation, network, and inference models Insights from special cases Markov random fields ◮ Conditional-independence Relationships ◮ Hammersley-Clifford Theorem ◮ Form of Likelihood Ratio Scalable data fusion for Markov random field Some related problems Conclusion and future work Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 20 / 59
Inference Model and Assumptions ∆ Random location V n =( V 1 , · · · , V n ) and samples Y V n . Binary hypothesis: H 0 vs. H 1 : H k : Y V n ∼ f ( y v n | V n = v n ; H k ) Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 21 / 59
Inference Model and Assumptions ∆ Random location V n =( V 1 , · · · , V n ) and samples Y V n . Binary hypothesis: H 0 vs. H 1 : H k : Y V n ∼ f ( y v n | V n = v n ; H k ) Y V n : Markov random field with dependency graph G k ( V n ) Y j Y i Fusion center Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 21 / 59
Dependency Graph and Markov Random Field Consider an undirected graph G ( V ) , each vertex V i ∈ V is associated with a random variable Y i Y j Y i Y k Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 22 / 59
Dependency Graph and Markov Random Field Consider an undirected graph G ( V ) , each vertex V i ∈ V is associated with a random variable Y i V \{ Nbd ( i ) ∪ i } Nbd ( i ) i Y i ⊥ ⊥ Y V \{ Nbd ( i ) ∪ i } | Y Nbd ( i ) Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 22 / 59
Dependency Graph and Markov Random Field Consider an undirected graph G ( V ) , each vertex V i ∈ V is associated with a random variable Y i For any disjoint sets A , B , C such that C separates A and B , V \{ Nbd ( i ) ∪ i } B Nbd ( i ) C i A Y A ⊥ ⊥ Y B | Y C Y i ⊥ ⊥ Y V \{ Nbd ( i ) ∪ i } | Y Nbd ( i ) Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 22 / 59
Likelihood Function of MRF Hammersley-Clifford Theorem’71 Let f be joint pdf of MRF with graph G ( V ) , � − log f ( Y V ) = Ψ c ( Y c ) c ∈ C where C is the set of maximal cliques. Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 23 / 59
Likelihood Function of MRF Hammersley-Clifford Theorem’71 Let f be joint pdf of MRF with graph G ( V ) , � − log f ( Y V ) = Ψ c ( Y c ) c ∈ C where C is the set of maximal cliques. Gaussian MRF: � � � V ( i, j ) Y i Y j + � Σ − 1 Σ − 1 − log f ( Y V ) = 1 V ( i, i ) Y 2 − n log 2 π − log | Σ V | + i 2 ( i,j ) ∈ G i ∈ V 1 2 3 4 5 6 7 8 X 8 X 1 7 X X X X 2 Inverse of X X X 1 3 6 Dependency X 3 Covariance 5 4 X X X 5 Graph Matrix X X 6 X X 7 X X 8 4 2 Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 23 / 59
Inference Model and Assumptions ∆ Random location V n =( V 1 , · · · , V n ) and samples Y V n . Binary hypothesis: H 0 vs. H 1 : H k : Y V n ∼ f ( y v n | V n = v n , H k ) Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 24 / 59
Inference Model and Assumptions ∆ Random location V n =( V 1 , · · · , V n ) and samples Y V n . Binary hypothesis: H 0 vs. H 1 : H k : Y V n ∼ f ( y v n | V n = v n , H k ) Y V n : Markov random field with dependency graph G k ( V n ) � − log f ( Y V n | G k , H k ) = Ψ k,c ( Y c ) c ∈ C k where C n,k is the collection of maximal cliques Ψ k,c clique potentials. H 0 : G 0 H 1 : G 1 Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 24 / 59
Dependency Graph Model H 0 : G 0 H 1 : G 1 Recall Hammersley-Clifford Theorem − log f ( Y V n | G k , H k ) = � Ψ k,c ( Y c ) c ∈ C k Minimal sufficient statistic L G ( Y V ) = log f ( Y V | G 0 , H 0 ) f ( Y V | G 1 , H 1 ) Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 25 / 59
Dependency Graph Model H 0 : G 0 H 1 : G 1 Joint: G 0 ∪ G 1 Recall Hammersley-Clifford Theorem − log f ( Y V n | G k , H k ) = � Ψ k,c ( Y c ) c ∈ C k Minimal sufficient statistic L G ( Y V ) = log f ( Y V | G 0 , H 0 ) f ( Y V | G 1 , H 1 ) Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 25 / 59
Dependency Graph Model H 0 : G 0 H 1 : G 1 Joint: G 0 ∪ G 1 Recall Hammersley-Clifford Theorem − log f ( Y V n | G k , H k ) = � Ψ k,c ( Y c ) c ∈ C k Minimal sufficient statistic L G ( Y V ) = log f ( Y V | G 0 , H 0 ) f ( Y V | G 1 , H 1 ) Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 25 / 59
Dependency Graph Model H 0 : G 0 H 1 : G 1 Joint: G 0 ∪ G 1 Recall Hammersley-Clifford Theorem − log f ( Y V n | G k , H k ) = � Ψ k,c ( Y c ) c ∈ C k Minimal sufficient statistic L G ( Y V ) = log f ( Y V | G 0 , H 0 ) � f ( Y V | G 1 , H 1 )= φ ( Y c ) c ∈ C Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 25 / 59
Outline Models, assumptions, and problem formulations ◮ Propagation, network, and inference models Insights from special cases Markov random fields Scalable data fusion for Markov random field ◮ A suboptimal scalable policy ◮ Effects of sparsity on scalability ◮ Energy scaling analysis Some related problems Conclusion and future work Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 26 / 59
Fusion for Markov Random Field Dependency graph Network graph Fusion policy graph Lossless Fusion Policies Given the network and dependency graphs ( N , G ) , = { π : L G ( Y V ) = � ∆ φ ( Y c ) computable at the fusion center } . F G , N c ∈ C � Optimal fusion Policy: E ( π ∗ n ) = min i E i ( π n ) π ∈ F G n, N n NP-hard: Steiner-tree reduction (INFOCOM ‘08) Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 27 / 59
Data Fusion for Markov Random Field (DFMRF) Log-likelihood Ratio L G ( Y V ) = � φ ( Y c ) c ∈ C Step I: Data forwarding and local computation: Given dependency graph G and network graph N . Randomly select a representative (processor) in each clique of G . Clique members forward data to processor via SPR on N c 3 c 2 c 1 c 4 Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 28 / 59
Data Fusion for Markov Random Field (DFMRF) Log-likelihood Ratio L G ( Y V ) = � φ ( Y c ) c ∈ C Step I: Data forwarding and local computation: Given dependency graph G and network graph N . Randomly select a representative (processor) in each clique of G . Clique members forward data to processor via SPR on N c 3 c 2 c 1 c 4 Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 28 / 59
Data Fusion for Markov Random Field (DFMRF) Log-likelihood Ratio L G ( Y V ) = � φ ( Y c ) c ∈ C Step I: Data forwarding and local computation: Given dependency graph G and network graph N . Randomly select a representative (processor) in each clique of G . Clique members forward data to processor via SPR on N Raw Data: Y i Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 28 / 59
Data Fusion for Markov Random Field (DFMRF) Log-likelihood Ratio L G ( Y V ) = � φ ( Y c ) c ∈ C Step I: Data forwarding and local computation: Given dependency graph G and network graph N . Randomly select a representative (processor) in each clique of G . Clique members forward data to processor via SPR on N φ ( Y c 3 ) φ ( Y c 1 ) + φ ( Y c 2 ) φ ( Y c 4 ) Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 28 / 59
Data Fusion for Markov Random Field (DFMRF) Log-likelihood Ratio L G ( Y V ) = � φ ( Y c ) c ∈ C Step I: Data forwarding and local computation: Given dependency graph G and network graph N . Randomly select a representative (processor) in each clique of G . Clique members forward data to processor via SPR on N Step II: aggregating LLR over MST φ ( Y c 3 ) φ ( Y c 1 ) + φ ( Y c 2 ) φ ( Y c 4 ) Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 28 / 59
Data Fusion for Markov Random Field (DFMRF) Log-likelihood Ratio L G ( Y V ) = � φ ( Y c ) c ∈ C Step I: Data forwarding and local computation: Given dependency graph G and network graph N . Randomly select a representative (processor) in each clique of G . Clique members forward data to processor via SPR on N Step II: aggregating LLR over MST + L G Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 28 / 59
Data Fusion for Markov Random Field (DFMRF) Log-likelihood Ratio L G ( Y V ) = � φ ( Y c ) c ∈ C Step I: Data forwarding and local computation: Given dependency graph G and network graph N . Randomly select a representative (processor) in each clique of G . Clique members forward data to processor via SPR on N Step II: aggregating LLR over MST + L G Total energy consumption= Data Forwarding + MST Aggregation Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 28 / 59
Effects of Dependency Graph Sparsity on Scalability Sparsity of Dependency Graph � � φ ( Y i ) φ ( Y c ) φ ( Y V ) i ∈ V c ∈ C Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 29 / 59
Effects of Dependency Graph Sparsity on Scalability Sparsity of Dependency Graph � � φ ( Y i ) φ ( Y c ) φ ( Y V ) i ∈ V c ∈ C Stabilizing graph (Penrose-Yukich) Local graph structure not affected by far away points ( k -NNG, Disk) M. D. Penrose and J. E. Yukich, “Weak Laws Of Large Numbers In Geometric Probability,” Annals of Applied probability, vol. 13, no. 1, pp. 277-303, 2003 Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 29 / 59
Effects of Network Graph Sparsity on Scalability Sparsity of Network Graph Single Hop Complete ( N n ) u -Spanner Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 30 / 59
Effects of Network Graph Sparsity on Scalability Sparsity of Network Graph Single Hop Complete ( N n ) u -Spanner Gabriel: u = 1 for ν ≥ 2 u -Spanner Given network graph N n and its �� �� �� �� completion N n , N n is a u -spanner if �� �� �� �� �� �� �� �� E ( V i → V j ; SP on N n ) max E ( V i → V j ; SP on N n ) ≤ u V i ,V j ∈ V n Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 30 / 59
Effects of Network Graph Sparsity on Scalability Sparsity of Network Graph Single Hop Complete ( N n ) u -Spanner Gabriel: u = 1 for ν ≥ 2 u -Spanner Given network graph N n and its �� �� �� �� completion N n , N n is a u -spanner if �� �� �� �� �� �� �� �� E ( V i → V j ; SP on N n ) max E ( V i → V j ; SP on N n ) ≤ u V i ,V j ∈ V n Longest edge O ( √ log n ) Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 30 / 59
Main Result: Scalability of DFMRF Dependency graph Network graph Fusion policy graph Stabilizing u -Spanner DFMRF Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 31 / 59
Main Result: Scalability of DFMRF Dependency graph Network graph Fusion policy graph Stabilizing u -Spanner DFMRF Scaling Constant for Scale-Invariant Graphs ( k -NNG) � E ( π DFMRF ) λ − ν κ ( x ) 1 − ν n 2 [ u ζ ( ν ; G ) 2 dx, lim sup ≤ + ζ ( ν ; MST ) ] n n →∞ � �� � � �� � Q 1 data forward MST aggregation � ∆ | 0 , j | ν ζ ( ν ; G ) = E ( 0 ,j ) ∈ G ( P 1 ∪{ 0 } ) Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 31 / 59
Approximation Ratio for DFMRF ∆ Recall F G = { π : L G ( Y V ) computable at the fusion center } � E ( π ∗ n ) = min E i ( π n ) π ∈ F G i Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 32 / 59
Approximation Ratio for DFMRF ∆ Recall F G = { π : L G ( Y V ) computable at the fusion center } � E ( π ∗ n ) = min E i ( π n ) π ∈ F G i Lower and Upper Bounds For Optimal Fusion Policy ) ≤ E ( π ∗ E ( π MST n ) ≤ E ( π DFMRF ) n n Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 32 / 59
Approximation Ratio for DFMRF ∆ Recall F G = { π : L G ( Y V ) computable at the fusion center } � E ( π ∗ n ) = min E i ( π n ) π ∈ F G i Lower and Upper Bounds For Optimal Fusion Policy ) ≤ E ( π ∗ E ( π MST n ) ≤ E ( π DFMRF ) n n Approximation Ratio of DFMRF for k -NNG Dependency � ζ ( ν ; G ) � E ( π DFMRF ) lim sup n ≤ 1 + u E ( π ∗ n ) ζ ( ν ; MST ) n →∞ Constant factor approximation for DFMRF for large networks Approximation ratio independent of node placement for k -NNG Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 32 / 59
Simulation Results for k -NNG Dependency Avg. Energy Under Uniform Placement Approx. Ratio for DFMRF 10 5 0-NNG: MST No correlation 9 4.5 1-NNG: DFMRF 1-NNG dependency 8 2-NNG: DFMRF 2-NNG dependency 4 3-NNG: DFMRF 3-NNG dependency 7 3.5 No Fusion: SPR 6 3 5 2.5 4 2 3 1.5 2 1 1 0.5 0 20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180 Number of nodes n Number of nodes n Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 33 / 59
What Have We Done and Left Out.... Energy scaling laws ◮ Assumed stabilizing dependency graph and u -spanner network graph ◮ Defined a fusion policy π DFMRF (DFMRF) n � ) ≤ ¯ ◮ Scalability analysis: lim sup 1 i E i ( π DFMRF E DFMRF n n ∞ n →∞ α ≤ ¯ ∞ ≤ ¯ E π ∗ E DFMRF ≤ β < ∞ ∞ β ◮ Asymptotic approximation ratio: α . Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 34 / 59
What Have We Done and Left Out.... Energy scaling laws ◮ Assumed stabilizing dependency graph and u -spanner network graph ◮ Defined a fusion policy π DFMRF (DFMRF) n � ) ≤ ¯ ◮ Scalability analysis: lim sup 1 i E i ( π DFMRF E DFMRF n n ∞ n →∞ α ≤ ¯ ∞ ≤ ¯ E π ∗ E DFMRF ≤ β < ∞ ∞ β ◮ Asymptotic approximation ratio: α . Remarks ◮ Energy consumption is a key parameter for large sensor networks. ◮ Sensor location is a new source of randomness in distributed inference ◮ Asymptotic techniques are useful in overall network design. Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 34 / 59
What Have We Done and Left Out.... Energy scaling laws ◮ Assumed stabilizing dependency graph and u -spanner network graph ◮ Defined a fusion policy π DFMRF (DFMRF) n � ) ≤ ¯ ◮ Scalability analysis: lim sup 1 i E i ( π DFMRF E DFMRF n n ∞ n →∞ α ≤ ¯ ∞ ≤ ¯ E π ∗ E DFMRF ≤ β < ∞ ∞ β ◮ Asymptotic approximation ratio: α . Remarks ◮ Energy consumption is a key parameter for large sensor networks. ◮ Sensor location is a new source of randomness in distributed inference ◮ Asymptotic techniques are useful in overall network design. We have ignored several issues: ◮ one-shot inference ◮ quantization of measurements and link capacity constraints ◮ perfect transmission/reception and scheduling ◮ computation cost and overheads Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 34 / 59
Outline Models, assumptions, and problem formulations ◮ Propagation, network, and inference models Insights from special cases Markov random fields Scalable data fusion for Markov random field Some related problems ◮ Error exponents on random graph ◮ Cost performance tradeoff ◮ Inference in finite networks Conclusion and future work Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 35 / 59
Design for Energy Constrained Inference P 1 → 0 ( n ) Error Exponent (IT ‘09, ISIT ‘09) For MRF hypothesis with node density P 1 → 0 ( n ) ∼ exp( − n D λ,κ ) λ and distribution κ ( x ) , − 1 ? − → D λ,κ n log P 1 → 0 ( n ) n Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 36 / 59
Design for Energy Constrained Inference P 1 → 0 ( n ) Error Exponent (IT ‘09, ISIT ‘09) For MRF hypothesis with node density P 1 → 0 ( n ) ∼ exp( − n D λ,κ ) λ and distribution κ ( x ) , − 1 ? − → D λ,κ n log P 1 → 0 ( n ) n Design for Energy Constrained Inference (SP ‘08) subject to ¯ λ,κ ≤ ¯ E π λ,κ,π D λ,κ max E o (1) A. Anandkumar, L. Tong, A. Swami, “Detection of Gauss-Markov Random Fields with Nearest-Neighbor Dependency,” IEEE Tran. on Information Theory , Feb. 2009 (2) A. Anandkumar, J.E. Yukich, L. Tong, A. Willsky, “Detection Error Exponent for Spatially Dependent Samples in Random Networks,” Proc. of IEEE ISIT , Jun. 2009 (3) A. Anandkumar, L. Tong, and A. Swami, “Optimal Node Density for Detection in Energy Constrained Random Networks,” IEEE Tran. Signal Proc. , pp. 5232-5245, Oct. 2008. Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 36 / 59
Inference In Finite Fusion Networks We have so far considered Harder problem Random node placement Arbitrary node placement Scaling as n → ∞ Finite n Results (INFOCOM ‘08 & ‘09) Fusion Center Fusion scheme has a Steiner tree reduction Cost-performance tradeoff Y n = [ Y 1 , . . . , Y n ] (1) A. Anandkumar, L. Tong, A. Swami, and A. Ephremides, “Minimum Cost Data Aggregation with Localized Processing for Statistical Inference,” in Proc. of INFOCOM , April 2008 (2) A. Anandkumar, M. Wang, L. Tong, and A. Swami, “Prize-Collecting Data Fusion for Cost- Performance Tradeoff in Distributed Inference,” in Proc. of IEEE INFOCOM , April 2009. Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 37 / 59
Medium Access Control (SP ‘07, IT ‘08) With L. Tong, Cornell, & A. Swami, ARL Fusion Center Constant BW Scaling Realization . Type Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 38 / 59
Medium Access Control Transaction Monitoring (SP ‘07, IT ‘08) With L. Tong, Cornell, & A. Swami, ARL (Sigmetrics ‘08) With C. Bisdikian & D. Agrawal, IBM Research Fusion Center Constant BW Scaling Realization . Type Decentralized Bipartite Matching Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 38 / 59
Medium Access Control Transaction Monitoring (SP ‘07, IT ‘08) With L. Tong, Cornell, & A. Swami, ARL (Sigmetrics ‘08) With C. Bisdikian & D. Agrawal, IBM Research Fusion Center Constant BW Scaling Realization . Type Decentralized Bipartite Matching Learning dependency models (ISIT ‘09) With V. Tan, A. Willsky, MIT, & L. Tong, Cornell SNR for learning Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 38 / 59
Medium Access Control Transaction Monitoring (SP ‘07, IT ‘08) With L. Tong, Cornell, & A. Swami, ARL (Sigmetrics ‘08) With C. Bisdikian & D. Agrawal, IBM Research Fusion Center Constant BW Scaling Realization . Type Decentralized Bipartite Matching Learning dependency models Competitive Learning (ISIT ‘09) With V. Tan, A. Willsky, MIT, & L. Tong, Cornell With A.K. Tang, Cornell Univ. SNR for learning Regret-free under interference Spectrum Whitespace Secondary Primary Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 38 / 59
Holy Grail... Networks Seamless operation Efficient resource utilization Unified theory: feasibility of large networks under different applications Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 39 / 59
Holy Grail... Networks Seamless operation Efficient resource utilization Unified theory: feasibility of large networks under different applications Network Data Data-centric paradigms Unifying computation and communication. ◮ e.g., inference Fundamental limits and scalable algorithms Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 39 / 59
Multidisciplinary Research Approximation Algorithms Detection/Estimation Theory Unified Network Theory Information Theory Random Graphs Communication Theory Asymptotics and Large Deviations Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 40 / 59
http://acsp.ece.cornell.edu/members/anima.html Thank You! Anima Anandkumar (Cornell) Scaling Laws B-exam 05/26/09 41 / 59
Recommend
More recommend