rotations in 3d using geometric algebra
play

Rotations in 3D using Geometric Algebra Kusal de Alwis Mentor: - PowerPoint PPT Presentation

Rotations in 3D using Geometric Algebra Kusal de Alwis Mentor: Laura Iosip Directed Reading Program, Spring 2019 The Problem Overview Prior Methods for Rotations What is the Geometric Algebra? Rotating with Geometric Algebra


  1. Rotations in 3D using Geometric Algebra Kusal de Alwis Mentor: Laura Iosip Directed Reading Program, Spring 2019

  2. The Problem

  3. Overview š Prior Methods for Rotations š What is the Geometric Algebra? š Rotating with Geometric Algebra š Further Applications

  4. Prior Methods

  5. Rotation Matrix - 2D

  6. Rotation Matrix - 3D

  7. Rotation Matrix - 3D

  8. Quaternions – 3D

  9. Quaternions – 3D

  10. Quaternions – 3D

  11. Octonions – 4D

  12. The Geometric Algebra

  13. Extension of R n š Vectors and Scalars š Same old algebra š Scalar Multiplication, Addition š Only one augmentation…

  14. The Geometric Product š Inner Product š Standard Dot Product

  15. The Geometric Product š Inner Product š Standard Dot Product š Exterior Product š Another multiplication scheme š Represents planes

  16. The Geometric Product š Inner Product š Standard Dot Product š Exterior Product š Another multiplication scheme š Represents planes š Geometric Product *Only for vectors

  17. Implications of the Geometric Product 𝑓 " 𝑓 # = 𝑓 " % 𝑓 # + 𝑓 " ∧ 𝑓 # = 0 + 𝑓 " ∧ 𝑓 # = 𝑓 " ∧ 𝑓 #

  18. Implications of the Geometric Product 𝑓 " 𝑓 # = 𝑓 " % 𝑓 # + 𝑓 " ∧ 𝑓 # = 0 + 𝑓 " ∧ 𝑓 # = 𝑓 " ∧ 𝑓 #

  19. Implications of the Geometric Product 𝑓 " 𝑓 # = 𝑓 " % 𝑓 # + 𝑓 " ∧ 𝑓 # = 0 + 𝑓 " ∧ 𝑓 # = 𝑓 " ∧ 𝑓 # 𝑓 " 𝑓 " + 𝑓 # = 𝑓 " 𝑓 " + 𝑓 " 𝑓 # = (𝑓 " % 𝑓 " + 𝑓 " ∧ 𝑓 " ) + (𝑓 " % 𝑓 # + 𝑓 " ∧ 𝑓 # ) = 1 + 𝑓 " ∧ 𝑓 #

  20. Multivectors in G 3

  21. Multivectors in G 3

  22. Multivectors in G 3

  23. Multivectors in G 3

  24. Multivectors in G 3

  25. Basis of G n R n š 𝑓 " š 𝑓 # š 𝑓 , š 𝑓 - š … š 𝑓 . š n -dimensional space

  26. Basis of G n R n G n š 𝑓 " š 1 š 𝑓 # š 𝑓 " , 𝑓 # , 𝑓 , , … , 𝑓 . š 𝑓 , š 𝑓 " ∧ 𝑓 # , 𝑓 " ∧ 𝑓 , , … 𝑓 " ∧ 𝑓 . , 𝑓 # ∧ 𝑓 , , 𝑓 # ∧ 𝑓 - , … 𝑓 # ∧ 𝑓 . … 𝑓 .1" ∧ 𝑓 . š 𝑓 - š 𝑓 " ∧ 𝑓 # ∧ 𝑓 , , 𝑓 " ∧ 𝑓 # ∧ 𝑓 - , … š … š … š 𝑓 . š 𝑓 " ∧ 𝑓 # ∧ 𝑓 , ∧ 𝑓 - ∧ ⋯ ∧ 𝑓 .1" ∧ 𝑓 . š n -dimensional space š 2 n -dimensional space

  27. Rotations in G n

  28. Projections & Rejections š Unit a normal to a plane, Arbitrary v

  29. Projections & Rejections š Unit a normal to a plane, Arbitrary v š Projection š 𝑤 4 = 𝑏 % 𝑤 𝑏 š Rejection š 𝑤 ∥ = 𝑤 − 𝑤 4 = 𝑤 − 𝑏 % 𝑤 𝑏

  30. Reflection š Reflect v on plane perpendicular to a š 𝑤 = 𝑤 ∥ + 𝑤 4

  31. Reflection š Reflect v on plane perpendicular to a š 𝑤 = 𝑤 ∥ + 𝑤 4 š 𝑆 9 𝑤 = 𝑤 ∥ − 𝑤 4

  32. Reflection š Reflect v on plane perpendicular to a š 𝑤 = 𝑤 ∥ + 𝑤 4 𝑏 % 𝑤 = 1 2 (𝑏𝑤 + 𝑤𝑏) š 𝑆 9 𝑤 = 𝑤 ∥ − 𝑤 4

  33. Reflection š Reflect v on plane perpendicular to a š 𝑤 = 𝑤 ∥ + 𝑤 4 𝑏 % 𝑤 = 1 š 𝑆 9 𝑤 = 𝑤 ∥ − 𝑤 4 2 (𝑏𝑤 + 𝑤𝑏) = 𝑤 − 𝑏 % 𝑤 𝑏 − 𝑏 % 𝑤 𝑏 = 𝑤 − 2 𝑏 % 𝑤 𝑏 = 𝑤 − 2 1 2 𝑏𝑤 + 𝑤𝑏 𝑏 = 𝑤 − 𝑏𝑤𝑏 − 𝑤𝑏 # = 𝑤 − 𝑏𝑤𝑏 − 𝑤 = −𝑏𝑤𝑏

  34. Rotation via Double Reflection

  35. Rotation via Double Reflection

  36. Rotation via Double Reflection

  37. Rotation via Double Reflection 𝑆𝑝𝑢 #= (𝑤) = 𝑆 > 𝑆 9 𝑤 = 𝑆 > −𝑏𝑤𝑏 = −𝑐 −𝑏𝑤𝑏 𝑐 = 𝑐𝑏𝑤𝑏𝑐

  38. Rotation via Double Reflection 𝑆𝑝𝑢 #= (𝑤) = 𝑆 > 𝑆 9 𝑤 = 𝑆 > −𝑏𝑤𝑏 = −𝑐 −𝑏𝑤𝑏 𝑐 = 𝑐𝑏𝑤𝑏𝑐 𝑏𝑐 = 𝑐 𝑏𝑏 𝑐 = 𝑐𝑐 = 1, 𝑐𝑏 = (𝑏𝑐) 1" 𝑐𝑏

  39. Rotation via Double Reflection 𝑆𝑝𝑢 #= (𝑤) = 𝑆 > 𝑆 9 𝑤 = 𝑆 > −𝑏𝑤𝑏 = −𝑐 −𝑏𝑤𝑏 𝑐 = 𝑐𝑏𝑤𝑏𝑐 𝑏𝑐 = 𝑐 𝑏𝑏 𝑐 = 𝑐𝑐 = 1, 𝑐𝑏 = (𝑏𝑐) 1" 𝑐𝑏 𝑆𝑝𝑢 #= (𝑤) = (𝑏𝑐) 1" 𝑤𝑏𝑐

  40. Rotors 𝑆 = 𝑣𝑤 = 𝑣 % 𝑤 + 𝑣 ∧ 𝑤 = 𝑣 𝑤 𝑓 AB

  41. Rotors 𝑆 = 𝑣𝑤 = 𝑣 % 𝑤 + 𝑣 ∧ 𝑤 = 𝑣 𝑤 𝑓 AB

  42. Rotors 𝑆 = 𝑣𝑤 = 𝑣 % 𝑤 + 𝑣 ∧ 𝑤 = 𝑣 𝑤 𝑓 AB 𝑏𝑐 = 𝑏 𝑐 𝑓 AB = 𝑓 =B

  43. Rotors 𝑆 = 𝑣𝑤 = 𝑣 % 𝑤 + 𝑣 ∧ 𝑤 = 𝑣 𝑤 𝑓 AB 𝑏𝑐 = 𝑏 𝑐 𝑓 AB = 𝑓 =B 𝑆𝑝𝑢 #= 𝑤 = 𝑏𝑐 1" 𝑤𝑏𝑐 = 𝑓 1=B 𝑤𝑓 =B

  44. Rotors 𝑆 = 𝑣𝑤 = 𝑣 % 𝑤 + 𝑣 ∧ 𝑤 = 𝑣 𝑤 𝑓 AB 𝑏𝑐 = 𝑏 𝑐 𝑓 AB = 𝑓 =B 𝑆𝑝𝑢 #= 𝑤 = 𝑏𝑐 1" 𝑤𝑏𝑐 = 𝑓 1=B 𝑤𝑓 =B 𝑆𝑝𝑢 A,B 𝑤 = 𝑓 1A A #B 𝑤𝑓 #B

  45. Relating back 𝑆 = 𝑣𝑤 = 𝑣 % 𝑤 + 𝑣 ∧ 𝑤 = 𝑥 + 𝑦𝑓 " ∧ 𝑓 # + 𝑧𝑓 # ∧ 𝑓 , + 𝑨𝑓 " ∧ 𝑓 ,

  46. Relating back 𝑆 = 𝑣𝑤 = 𝑣 % 𝑤 + 𝑣 ∧ 𝑤 𝑟 = 𝑥 + 𝑦𝑗 + 𝑧𝑘 + 𝑨𝑙 = 𝑥 + 𝑦𝑓 " ∧ 𝑓 # + 𝑧𝑓 # ∧ 𝑓 , + 𝑨𝑓 " ∧ 𝑓 ,

  47. Relating back 𝑆 = 𝑣𝑤 = 𝑣 % 𝑤 + 𝑣 ∧ 𝑤 𝑟 = 𝑥 + 𝑦𝑗 + 𝑧𝑘 + 𝑨𝑙 = 𝑥 + 𝑦𝑓 " ∧ 𝑓 # + 𝑧𝑓 # ∧ 𝑓 , + 𝑨𝑓 " ∧ 𝑓 , 𝑓 " ∧ 𝑓 # = 𝑗 𝑓 # ∧ 𝑓 , = 𝑘 𝑓 " ∧ 𝑓 , = 𝑙

  48. Relating back 𝑆 = 𝑣𝑤 = 𝑣 % 𝑤 + 𝑣 ∧ 𝑤 𝑟 = 𝑥 + 𝑦𝑗 + 𝑧𝑘 + 𝑨𝑙 = 𝑥 + 𝑦𝑓 " ∧ 𝑓 # + 𝑧𝑓 # ∧ 𝑓 , + 𝑨𝑓 " ∧ 𝑓 , 𝑓 " ∧ 𝑓 # = 𝑗 𝑓 # ∧ 𝑓 , = 𝑘 𝑓 " ∧ 𝑓 , = 𝑙 𝑅𝑣𝑏𝑢𝑓𝑠𝑜𝑗𝑝𝑜𝑡 ⊂ 𝐻𝑓𝑝𝑛𝑓𝑢𝑠𝑗𝑑 𝐵𝑚𝑕𝑓𝑐𝑠𝑏

  49. Further Applications

  50. Linear Algebra – System of Equations 𝑦 " 𝑧 " 𝛽 𝛾 = 𝑐 " 𝑦 # 𝑧 # 𝑐 #

  51. Linear Algebra – System of Equations 𝑦 " 𝑧 " 𝛽 𝛾 = 𝑐 " 𝛽𝑦 + 𝛾𝑧 = 𝑐 𝑦 # 𝑧 # 𝑐 #

  52. Linear Algebra – System of Equations 𝛽𝑦 + 𝛾𝑧 = 𝑐

  53. Linear Algebra – System of Equations 𝛽𝑦 + 𝛾𝑧 = 𝑐 𝛽𝑦 ∧ 𝑧 + 𝛾𝑧 ∧ 𝑧 = 𝑐 ∧ 𝑧

  54. Linear Algebra – System of Equations 𝛽𝑦 + 𝛾𝑧 = 𝑐 𝛽𝑦 ∧ 𝑧 + 𝛾𝑧 ∧ 𝑧 = 𝑐 ∧ 𝑧 𝑧 ∧ 𝑧 = 0 𝛽𝑦 ∧ 𝑧 = 𝑐 ∧ 𝑧

  55. Linear Algebra – System of Equations 𝛽𝑦 + 𝛾𝑧 = 𝑐 𝛽𝑦 ∧ 𝑧 + 𝛾𝑧 ∧ 𝑧 = 𝑐 ∧ 𝑧 𝑧 ∧ 𝑧 = 0 𝛽𝑦 ∧ 𝑧 = 𝑐 ∧ 𝑧 >∧X 𝛽 = Y∧X

  56. Linear Algebra – System of Equations 𝛽𝑦 + 𝛾𝑧 = 𝑐 𝛽𝑦 ∧ 𝑧 + 𝛾𝑧 ∧ 𝑧 = 𝑐 ∧ 𝑧 𝑧 ∧ 𝑧 = 0 𝛽𝑦 ∧ 𝑧 = 𝑐 ∧ 𝑧 >∧X >∧Y Y∧> 𝛽 = 𝛾 = X∧Y = Y∧X Y∧X

  57. Linear Algebra – System of Equations 𝑦 " 𝑧 " 𝑦 ∧ 𝑧 = 𝑦 # 𝑧 #

  58. Linear Algebra – System of Equations 𝑦 " 𝑧 " 𝑦 ∧ 𝑧 = 𝑦 # 𝑧 # 𝑐 " 𝑧 " 𝛽 = 𝑐 ∧ 𝑧 𝑐 # 𝑧 # 𝑦 ∧ 𝑧 = 𝑦 " 𝑧 " 𝑦 # 𝑧 #

  59. Other Use Cases š Geometric Calculus š Calculus in G n

  60. Other Use Cases š Geometric Calculus š Calculus in G n š Homogeneous Geometric Algebra š Represent objects not centered at the origin š Projective Geometry

  61. Other Use Cases š Geometric Calculus š Calculus in G n š Homogeneous Geometric Algebra š Represent objects not centered at the origin š Projective Geometry š Conformal Geometric Algebra š Better representations of points, lines, spheres, etc. š Generalized operations for transformations

Recommend


More recommend