respondent mathieu gaborit supervisors peter g ransson
play

Respondent Mathieu Gaborit Supervisors Peter Gransson (KTH, se) - PowerPoint PPT Presentation

Respondent Mathieu Gaborit Supervisors Peter Gransson (KTH, se) Olivier Dazel (Le Mans Universit, fr) Faculty Opponent Lucie Rouleau (CNAM, fr) Evaluation Committees Elke Deckers (KU Leuven, be) meline Sadoulet (FEMTO ST, fr) Annie


  1. Respondent Mathieu Gaborit Supervisors Peter Göransson (KTH, se) Olivier Dazel (Le Mans Université, fr) Faculty Opponent Lucie Rouleau (CNAM, fr) Evaluation Committees Elke Deckers (KU Leuven, be) Émeline Sadoulet (FEMTO ST, fr) Annie Ross (Ec. Polytech. Montréal, qc) Camille Perrot (U. Paris Est, fr) Patrik Höstmad (Chalmers, se) Chair Jenny Jerrelind (KTH, se)

  2. Modelling strategies for thin imperfect interfaces and layers Public Doctoral Thesis Defense

  3. Context • Support from MWL • github.com/cpplanes/pymls • Free software: • ÖMSE grant • Acoustics HUB Grant • Support from DENORMS CA15125 1 • Co-tutelle agreement between • Main funder: Le Mans Acoustique • Funding: • 6-months periods • Marcus Wallenberg Lab. (Peter Göransson) • LAUM UMR CNRS 6613 (Olivier Dazel) Le Mans Université and KTH • 4 th year: AERIALIST • github.com/OlivierDAZEL/PLANES

  4. Efgects of noise Efgects of noise 1 : stress/anxiety, heart diseases, sleep troubles Focus: • Multi-functional World Health Organization (2009). OCLC: ocn475454508 World Health Organisation (2011). OCLC: 779684347 Beutel et al. (2016). PLOS ONE ,. 10.1371/journal.pone.0155357 Hume et al. (2012). Noise and Health , 10.4103/1463-1741.104897. 2 • Better performance (especially at low frequency) • Multi-objectives: broadband, context adaptation, tunability Of course: always thinner, lighter, concealed,… 1 Babisch (2002). Noise Health , pmid: 12537836

  5. Classical design Panels with multiple layers of foam/fjbrous media Allard and Atalla ( 2009) Pros: cheap to produce, robust, broadband Cons: ineffjcient at low frequency, hard to tune 3

  6. Classical design Panels with multiple layers of foam/fjbrous media Allard and Atalla ( 2009) Pros: cheap to produce, robust, broadband Cons: ineffjcient at low frequency, hard to tune 3

  7. Classical design Panels with multiple layers of foam/fjbrous media Allard and Atalla ( 2009) Pros: cheap to produce, robust, broadband Cons: ineffjcient at low frequency, hard to tune 3

  8. Classical design Panels with multiple layers of foam/fjbrous media Allard and Atalla ( 2009) Pros: cheap to produce, robust, broadband Cons: ineffjcient at low frequency, hard to tune 3

  9. Classical design Panels with multiple layers of foam/fjbrous media Allard and Atalla ( 2009) Pros: cheap to produce, robust, broadband Cons: ineffjcient at low frequency, hard to tune 3

  10. Cons: ineffjcient at low frequency, hard to tune Classical design Fibrous (1.5mm) – Carpet (3mm) – Film (0.5mm) Pros: cheap to produce, robust, broadband Panels with multiple layers of foam/fjbrous media Allard and Atalla ( 2009) 3 1.0 = 0 deg = 45 deg 0.8 Absorption coefficient 0.6 0.4 0.2 0.0 2000 4000 6000 8000 10000 Frequency (Hz)

  11. Cons: ineffjcient at low frequency, hard to tune Classical design Fibrous (1.5mm) – Carpet (3mm) – Film (0.5mm) Pros: cheap to produce, robust, broadband Panels with multiple layers of foam/fjbrous media Allard and Atalla ( 2009) 3 1.0 = 0 deg = 45 deg 0.8 Absorption coefficient 0.6 0.4 0.2 0.0 2000 4000 6000 8000 10000 Frequency (Hz)

  12. Classical design Fibrous (1.5mm) – Carpet (3mm) – Film (0.5mm) Cons: ineffjcient at low frequency, hard to tune Pros: cheap to produce, robust, broadband Panels with multiple layers of foam/fjbrous media Allard and Atalla ( 2009) 3 1.0 = 0 deg = 45 deg 0.8 Absorption coefficient 0.6 0.4 0.2 0.0 2000 4000 6000 8000 10000 Frequency (Hz)

  13. • Elastic/PEM cylinders: Groby et al. ( JASA 2009) Meta(-poroelastic) materials Idea: use networks of inclusions in a poroelastic matrix to improve performance • Elastic Shells: Weisser et al. ( JASA 2016) • Resonators: Boutin ( JASA 2013) & Groby et al. ( JASA 2015) • Split rings: Lagarrigue et al. ( JASA 2013) Deep-subwavelength with space coiling (for ex.) Zhou et al. ( APL 2019) 4

  14. Meta(-poroelastic) materials • Split rings: Lagarrigue et al. ( JASA 2013) Idea: use networks of inclusions in a poroelastic Zhou et al. ( APL 2019) Deep-subwavelength with space coiling (for ex.) 4 2015) • Resonators: Boutin ( JASA 2013) & Groby et al. ( JASA • Elastic Shells: Weisser et al. ( JASA 2016) matrix to improve performance . . . . . . • Elastic/PEM cylinders: Groby et al. ( JASA 2009) . . . . . . . . . . . . . . . . . . PEM Film Elastic/PEM inclusion

  15. Meta(-poroelastic) materials • Split rings: Lagarrigue et al. ( JASA 2013) Idea: use networks of inclusions in a poroelastic Zhou et al. ( APL 2019) Deep-subwavelength with space coiling (for ex.) 4 2015) • Resonators: Boutin ( JASA 2013) & Groby et al. ( JASA • Elastic Shells: Weisser et al. ( JASA 2016) matrix to improve performance . . . . . . • Elastic/PEM cylinders: Groby et al. ( JASA 2009) . . . . . . . . . . . . . . . . . . PEM Film Elastic/PEM inclusion

  16. Computing the response Transfer Matrix Method z … … Semi-analytical approaches (eq. Multiple Scattering Theory) or... Numerical methods (FEM) Ax b Need to mesh 5 s ′ = Ts

  17. Computing the response Transfer Matrix Method z … … Semi-analytical approaches (eq. Multiple Scattering Theory) or... Numerical methods (FEM) Need to mesh 5 Ax = b s ′ = Ts

  18. 1.0 Absorption coefficient 0.8 0.6 0.4 0.2 0.0 PEM + fjlm 500 1000 1500 2000 2500 3000 3500 4000 Frequency (Hz) Strong infmuence on the response Chevillotte ( JASA 2012) PEM Thin layers, strong efgects On the surface... Interfaces Zones • stifg glue layer • cluttered pores • bonding area ... but also between layers Acoustic Films • Porous • Dust • Wear & tear 6

  19. 1.0 Absorption coefficient 0.8 0.6 0.4 0.2 0.0 PEM + fjlm 500 1000 1500 2000 2500 3000 3500 4000 Frequency (Hz) Strong infmuence on the response Chevillotte ( JASA 2012) PEM Thin layers, strong efgects On the surface... Interfaces Zones • stifg glue layer • cluttered pores • bonding area ... but also between layers Acoustic Films • Porous • Dust • Wear & tear 6

  20. 1.0 Absorption coefficient 0.8 0.6 0.4 0.2 0.0 PEM + fjlm 500 1000 1500 2000 2500 3000 3500 4000 Frequency (Hz) Strong infmuence on the response Chevillotte ( JASA 2012) PEM Thin layers, strong efgects On the surface... Interfaces Zones • stifg glue layer • cluttered pores • bonding area ... but also between layers Acoustic Films • Porous • Dust • Wear & tear 6

  21. 1.0 Absorption coefficient 0.8 0.6 0.4 0.2 0.0 PEM + fjlm 500 1000 1500 2000 2500 3000 3500 4000 Frequency (Hz) Strong infmuence on the response Chevillotte ( JASA 2012) PEM Thin layers, strong efgects On the surface... Interfaces Zones • stifg glue layer • cluttered pores • bonding area ... but also between layers Acoustic Films • Porous • Dust • Wear & tear 6

  22. 1.0 Absorption coefficient 0.8 0.6 0.4 0.2 0.0 PEM + fjlm 500 1000 1500 2000 2500 3000 3500 4000 Frequency (Hz) PEM Thin layers, strong efgects On the surface... Interfaces Zones • stifg glue layer • cluttered pores • bonding area ... but also between layers Acoustic Films • Porous • Dust • Wear & tear 6 Strong infmuence on the response Chevillotte ( JASA 2012)

  23. 1.0 Absorption coefficient 0.8 0.6 0.4 0.2 0.0 500 1000 1500 2000 2500 3000 3500 4000 Frequency (Hz) PEM Thin layers, strong efgects On the surface... Interfaces Zones • stifg glue layer • cluttered pores • bonding area ... but also between layers Acoustic Films • Porous • Dust • Wear & tear 6 Strong infmuence on the response Chevillotte ( JASA 2012) PEM + fjlm

  24. PEM + fjlm Thin layers, strong efgects • cluttered pores PEM On the surface... Interfaces Zones • stifg glue layer 6 • bonding area • Porous ... but also between layers • Dust • Wear & tear Acoustic Films Strong infmuence on the response Chevillotte ( JASA 2012) 1.0 Absorption coefficient 0.8 0.6 0.4 0.2 0.0 500 1000 1500 2000 2500 3000 3500 4000 Frequency (Hz)

  25. • high fmow resistivity ( 10 5 N s m 4 and above) Acoustic fjlms Paper B • Woven or non-woven • From fmexible to stifg • very thin (less than 1 mm) 7

  26. Acoustic fjlms Paper B • Woven or non-woven • From fmexible to stifg • very thin (less than 1 mm) 7 • high fmow resistivity ( 10 5 N · s · m − 4 and above)

  27. Models: Equivalent fmuid — Rigid frame For instance Johnson-Champoux-Allard (JCA) model: Johnson et al. ( JFM 1987) Champoux and Allard ( JAP 1991) 0 Lafarge et al. ( JASA 1997) , Lafarge ( 1993) , Pride et al. ( PRB 1993) 8 Determine a ρ eq and a K eq σ (Flow resistivity) φ, Λ , α ∞ Λ ′ α 0 , α ′ 0 , k ′

  28. Models: Biot’s theory — Elastic frame Coupled motion & constitutive equations Biot ( JASA 1956) , Biot and Willis ( JAMech 1957) , Allard and Atalla ( 2009) , Dazel et al. ( JASA 2007) • fmuid/skeleton interactions • Fluid phase properties: JCA model 9 • 3 waves (2 compressional, 1 shear) ρ 1 Mass density E , ν Young’s modulus, Poisson’s ratio η Loss factor

  29. Characterisation uncertainties Paper B 10 40 samples per fjlm, 2 fjlms (based on ISO 9053-1:2018) Woven 1e6 8 7 Static air flow resistivity 6 5 4 3 2 1 0 1000 2000 3000 4000 4520 Frequency (Hz) Non-woven 1e6 1.0 Static air flow resistivity 0.8 0.6 0.4 Samples 0.2 Mean 0.0 1000 2000 3000 4000 4520 Frequency (Hz)

Recommend


More recommend