representations of classical lie groups two regimes of
play

Representations of classical Lie groups: two regimes of growth - PowerPoint PPT Presentation

Representations of classical Lie groups: two regimes of growth Alexey Bufetov University of Bonn 10 April, 2019 Plan Three (2 + ) settings: 1) Large unitary groups, 2) Unitarily invariant large random Hermitian matrices, 3) large symplectic


  1. Representations of classical Lie groups: two regimes of growth Alexey Bufetov University of Bonn 10 April, 2019

  2. Plan Three (2 + ε ) settings: 1) Large unitary groups, 2) Unitarily invariant large random Hermitian matrices, 3) large symplectic and orthogonal groups. Three limit regimes: 1) Random tilings; tensor products of representations; free probability 2) free probability 3) Random tilings with symmetry. 1) Infinite-dimensional unitary group 2) Unitarily invariant measures on infinite Hermitian matrices 3) Infinite-dimensional symplectic and orthogonal groups. Intermediate regime.

  3. Free probability (in random matrices). Let A be a N × N Hermitian matrix with eigenvalues { a i } N i =1 . Let N m [ A ] := 1 � δ ( a i ) N i =1 be the empirical measure of A . For each N = 1 , 2 , . . . take two sets of real numbers a ( N ) = { a i ( N ) } N i =1 and b ( N ) = { b i ( N ) } N i =1 . Let A ( N ) be the uniformly (“Haar distributed”) random N × N Hermitian matrix with fixed eigenvalues a ( N ) and let B ( N ) be the uniformly (“Haar distributed”) random N × N Hermitian matrix with fixed eigenvalues b ( N ) such that A ( N ) and B ( N ) are independent.

  4. Free convolution Suppose that as N → ∞ the empirical measures of A ( N ) and B ( N ) weakly converge to probability measures m 1 and m 2 , respectively. Theorem (Voiculescu, 1991) The random empirical measure of the sum A ( N ) + B ( N ) converges (weak convergence; in probability) to a deterministic measure m 1 ⊞ m 2 which is the free convolution of m 1 and m 2 .

  5. diag ( a 1 , . . . , a N ) – diagonal matrix with eigenvalues a 1 , . . . , a N . HC ( a 1 , . . . , a N ; b 1 , . . . , b N ) � exp ( Tr ( diag ( a 1 , . . . , a N ) U N diag ( b 1 , . . . , b N ) U ∗ := N )) dU N U ( N ) Harish-Chandra-Itzykson-Zuber integral det (exp( a i b j )) N i , j =1 HC ( a 1 , . . . , a N ; b 1 , . . . , b N ) = const � i < j ( a i − a j ) � i < j ( b i − b j )

  6. One can prove the theorem of Voiculescu with the use of the following asymptotic result of Guionnet-Maida’04: r is fixed, N → ∞ 1 N log HC ( x 1 , . . . , x r , 0 , . . . , 0; λ 1 , . . . , λ N ) → Ψ( x 1 ) + · · · + Ψ( x r ) N � λ i � ⇒ 1 � ⇐ δ → µ, weak convergence N N i =1 Functions convergence in a small neighborhood of (1 , 1 , . . . , 1) ∈ R r . Ψ ′ ( x ) = R free ( x ) . µ

  7. Representations of U ( N ) Let U ( N ) denote the group of all N × N unitary matrices. A signature of length N is a N -tuple of integers λ = λ 1 ≥ λ 2 ≥ · · · ≥ λ N . For example, λ = (5 , 3 , 3 , 1 , − 2 , − 2) is a signature of length 6. It is known that all irreducible representations of U ( N ) are parameterized by signatures (= highest weights). Let π λ be an irreducible representation of U ( N ) corresponding to λ . The character of π λ is the Schur function � � λ j + N − j det i , j =1 ,..., N x i s λ ( x 1 , . . . , x N ) = � 1 ≤ i < j ≤ N ( x i − x j )

  8. Vershik-Kerov, 70’s Given a finite-dimensional representation π of some group (e.g. S ( n ) , U ( N ) , Sp (2 N ) , SO ( N )) we can decompose it into irreducible components: � c λ π λ , π = λ where non-negative integers c λ are multiplicities, and λ ranges over labels of irreducible representations. This decomposition can be identified with a probability measure ρ π on labels ρ π ( λ ) := c λ dim( π λ ) . dim( π )

  9. Tensor product Let λ and µ be signatures of length N . π λ and π µ — irreducible representations of U ( N ). We consider the decomposition of the (Kronecker) tensor product π λ ⊗ π µ into irreducible components π λ ⊗ π µ = � c λ,µ π η , η η where η runs over signatures of length N . N � λ i + N − i � m [ λ ] := 1 � δ . N N i =1

  10. Assume that two sequences of signatures λ = λ ( N ) and µ = µ ( N ) satisfy m [ λ ] − N →∞ m 1 , − − → m [ µ ] − N →∞ m 2 , − − → weak convergence , where m 1 and m 2 are probability measures. For example, λ 1 = · · · = λ [ N / 2] = N , λ [ N / 2]+1 = · · · = λ N = 0, or λ i = N − i , for i = 1 , 2 , . . . , N . We are interested in the asymptotic behaviour of the decomposition of the tensor product into irreducibles, i.e., we are interested in the asymptotic behaviour of the random probability measure m [ ρ π λ ⊗ π µ ].

  11. Limit results for tensor products Under assumptions above, we have (Bufetov-Gorin’13): Law of Large Numbers: N →∞ m [ ρ π λ ⊗ π µ ] = m 1 ⊗ m 2 , lim where m 1 ⊗ m 2 is a deterministic measure on R . We call m 1 ⊗ m 2 the quantized free convolution of measures m 1 and m 2 . Similar results for symmetric group were obtained by Biane’98. Central Limit Theorem: Bufetov-Gorin’16.

  12. Lozenge tilings N = 6

  13. Petrov’12, Bufetov-Gorin’16: LLN+CLT.

  14. Lozenge tilings Kenyon-Okounkov conjecture for fluctuations: Kenyon (2004) : a class of domains with no frozen regions. Borodin-Ferrari (2008): Some infinite domains with frozen regions. Petrov (2012), Bufetov-Gorin (2016): A class of simply-connected domains with arbitrary boundary conditions on one side. (Boutillier-de Tili` ere (2009), Dubedat (2011)),Berestycki-Laslier-Ray-16) : Some non-planar domains. Bufetov-Gorin (2017): Some domains with holes.

  15. Bufetov-Gorin’17: LLN+CLT (with the use of Borodin-Gorin-Guionnet’15).

  16. Projections for Sp and SO y = 0 y = 0 N = 7, group Sp (6) N = 7, group SO (8) Bufetov-Gorin’13: limit shapes for these tilings; connection with free probability.

  17. Asymptotics of a normalised Schur function An important role in all these applications is played by the following asymptotics. r is fixed, N → ∞ . The following two relations are equivalent (Guionnet-Maida’04, and also Gorin-Panova’13, Bufetov-Gorin’13). N log s λ ( x 1 , . . . , x r , 1 N − r ) 1 → F 1 ( x 1 ) + · · · + F 1 ( x r ) s λ (1 N ) n ⇒ 1 � λ i + N − i � � ⇐ δ → µ 1 N N i =1 Notation: 1 N := (1 , 1 , . . . , 1) – N -tuple of 1’s.

  18. Extreme characters of the infinite-dimensional unitary group Consider the tower of embedded unitary groups U (1) ⊂ U (2) ⊂ · · · ⊂ U ( N ) ⊂ U ( N + 1) ⊂ . . . . The infinite–dimensional unitary group U ( ∞ ) is the union of these groups. Character of U ( ∞ ) is a positive-definite class function χ : U ( ∞ ) → C , normalised at unity: χ ( e ) = 1. We consider characters instead of representations. Extreme characters serve as an analogue of irreducible representations.

  19. Characters of U ( ∞ ) are completely determined by their values on diagonal matrices diag ( u 1 , u 2 , . . . ). Let us denote these values by χ ( u 1 , u 2 , . . . ). The classification of the extreme characters of U ( ∞ ) is given by Edrei-Voiculescu theorem (Edrei’53, Voiculescu’76, Vershik-Kerov’82, Boyer’83, Okounkov-Olshanski’98). Extreme characters have a multiplicative form χ ext ( u 1 , u 2 , . . . ) = Φ( u 1 )Φ( u 2 ) . . . . u − 1 − 1 � γ + ( u − 1) + γ − � �� Φ( u ) := exp i ( u − 1 − 1)) ∞ � (1 + β + i ( u − 1))(1 + β − � � × . i ( u − 1 − 1)) (1 − α + i ( u − 1))(1 − α − i =1 α ± = α ± β ± = β ± 1 ≥ α ± 1 ≥ β ± 2 ≥ · · · ≥ 0 , 2 ≥ · · · ≥ 0 , γ ± ≥ 0 , β + 1 + β − 1 ≤ 1 .

  20. Asymptotic approach: Vershik-Kerov’82, Okounkov-Olshanski’98: r is fixed, N → ∞ . s λ ( N ) ( x 1 , . . . , x r , 1 N − r ) → Φ( x 1 )Φ( x 2 ) · · · Φ( x r ) s λ ( N ) (1 N ) is equivalent to a certain condition on growth of signatures λ ( N ), which, in particular, encodes the parameters of Φ.

  21. Random matrix counterpart: Ergodic unitarily invariant measures on infinite Hermitian matrices. Vershik’74, Pickrell’91, Olshanski-Vershik’96 diag ( a 1 , . . . , a N ) – diagonal matrix with eigenvalues a 1 , . . . , a N . HC ( a 1 , . . . , a N ; b 1 , . . . , b N ) � exp ( Tr ( diag ( a 1 , . . . , a N ) U N diag ( b 1 , . . . , b N ) U ∗ := N )) dU N U ( N ) det (exp( a i b j )) N i , j =1 HC ( a 1 , . . . , a N ; b 1 , . . . , b N ) = � i < j ( a i − a j ) � i < j ( b i − b j )

  22. r is fixed, N → ∞ Olshanski-Vershik’96 log HC ( x 1 , . . . , x r , 0 , . . . , 0; λ 1 , . . . , λ N ) → Φ 0 ( x 1 ) + · · · + Φ 0 ( x r ) N � λ i � � ⇐ ⇒ δ → µ 0 , convergence of all ≥ 1 moments N i =1 In other words, λ 1 N → α 1 , . . . , λ i N → α i , . . . , λ N N → α − 1 , . . . , λ N − i +1 → α − i , . . . N and there willl be two more parameters γ 1 , γ 2 related to 0.

  23. The two key facts are similar. r is fixed, N → ∞ . log HC ( x 1 , . . . , x r , 0 , . . . , 0; λ 1 , . . . , λ N ) → Φ 0 ( x 1 ) + · · · + Φ 0 ( x r ) N � λ i � � ⇐ ⇒ δ → µ 0 N i =1 1 N log HC ( x 1 , . . . , x r , 0 , . . . , 0; λ 1 , . . . , λ N ) → Φ 1 ( x 1 ) + · · · + Φ 1 ( x r ) N ⇒ 1 � λ i � � ⇐ → µ 1 δ N N i =1

  24. Intermediate regime: Matrices Bufetov’19+: Let 0 ≤ θ ≤ 1. r is fixed, N → ∞ . We have 1 N θ log HC ( x 1 , . . . , x r , 0 , . . . , 0; λ 1 , . . . , λ N ) → Φ θ ( x 1 ) + · · · + Φ θ ( x r ) N � λ i � ⇒ 1 � ⇐ δ → µ θ . N θ N i =1 Φ θ ← → µ θ — bijection between possible limits.

Recommend


More recommend